Journal of Solution Chemistry

, Volume 3, Issue 1, pp 1–14 | Cite as

Ion-solvent interactions in aqueous solutions at various temperatures

  • L. A. Dunn
Article

Abstract

The temperature variation of the limiting partial molar volumes of a number of electrolytes in aqueous solution has been examined in terms of solvent electrostriction. The Desnoyers, Verrall, and Conway theory has been modified and extended to cover the temperature range 0–100°C. It has been shown that electrostriction effects alone cannot account for the observed maxima in the V° −T plots for various electrolytes. It is concluded that solvent structural changes over this temperature range may well be important.

Key words

Aqueous electrostriction ion-solvent interactions partial molar volumes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Dunn,Trans. Faraday Soc. 62, 2348 (1966).Google Scholar
  2. 2.
    L. A. Dunn,Trans. Faraday Soc. 64, 1898 (1968).Google Scholar
  3. 3.
    L. A. Dunn,Trans. Faraday Soc. 64, 2951 (1968).Google Scholar
  4. 4.
    A. J. Ellis,J. Chem. Soc. (A), 1579 (1966).Google Scholar
  5. 5.
    A. J. Ellis,J. Chem. Soc. (A), 660 (1967).Google Scholar
  6. 6.
    A. J. Ellis,J. Chem. Soc. (A), 1138 (1968).Google Scholar
  7. 7.
    A. Eucken,Z. Electrochem. 51, 6 (1948).Google Scholar
  8. 8.
    F. J. Millero, inWater and Aqueous Solutions-Structure, Thermodynamics, and Transport Processes, R. A. Horne, ed., (Wiley-Interscience, New York, 1972), p. 519.Google Scholar
  9. 9.
    M. Born,Z. Physik. 1, 45 (1920).Google Scholar
  10. 10.
    K. J. Laidler and C. Pegis,Proc. Roy. Soc. (A)241, 80 (1957).Google Scholar
  11. 11.
    S. W. Benson and C. S. Copeland,J. Phys. Chem. 67, 1194 (1963).Google Scholar
  12. 12.
    J. Padova,J. Chem. Phys. 39, 1552 (1963).Google Scholar
  13. 13.
    S. D. Hamann,Physico-chemical Effects of Pressure (Butterworths Scientific Publications, London, 1957).Google Scholar
  14. 14.
    E. Whalley,J. Chem. Phys. 38, 1400 (1963).Google Scholar
  15. 15.
    B. E. Conway, J. E. Desnoyers, and A. C. Smith,Phil. Trans. (A)256, 389 (1964).Google Scholar
  16. 16.
    E. Glueckauf,Trans. Faraday Soc. 61, 914 (1965).Google Scholar
  17. 17.
    J. E. Desnoyers, R. E. Verrall and B. E. Conway,J. Chem. Phys. 43, 243 (1965).Google Scholar
  18. 18.
    H. S. Frank,J. Chem. Phys. 23, 2023 (1955).Google Scholar
  19. 19.
    L. H. Adams,J. Am. Chem. Soc. 53, 3769 (1931).Google Scholar
  20. 20.
    D. C. Grahame,J. Chem. Phys. 21, 1054 (1953).Google Scholar
  21. 21.
    B. K. P. Scaife,Proc. Phys. Soc. (B)68, 790 (1955).Google Scholar
  22. 22.
    H. S. Harred and B. B. Owen,The Physical Chemistry of Electrolytic Solutions (Reinhold, New York, 1963), 3rd ed.Google Scholar
  23. 23.
    B. B. Owen, R. C. Miller, C. E. Milner, and H. L. Cogan,J. Phys. Chem. 65, 2065 (1961).Google Scholar
  24. 24.
    J. S. Rosen,J. Opt. Soc. Am. 37, 932 (1947).Google Scholar
  25. 25.
    J. Malsch,Z. Physik. 29, 770 (1928).Google Scholar
  26. 26.
    F. Booth,J. Chem. Phys. 19, 391, 1327, 1615 (1951).Google Scholar
  27. 27.
    L. Onsager,J. Am. Chem. Soc. 58, 1486 (1936).Google Scholar
  28. 28.
    J. Kirkwood,J. Chem. Phys. 7, 911 (1939).Google Scholar
  29. 29.
    E. Glueckauf,Trans. Faraday Soc. 60, 1637 (1964).Google Scholar
  30. 30.
    E. Glueckauf,Trans. Faraday Soc. 60, 776 (1964).Google Scholar
  31. 31.
    P. M. Lukehart,Comm. Assoc. Comp. Mach. 6, 737 (1963).Google Scholar
  32. 32.
    C. G. Malmberg and A. A. Maryott,J. Res. Nat. Bur. Std. 56, 1 (1956).Google Scholar
  33. 33.
    L. A. Dunn and R. H. Stokes,Trans. Faraday Soc 65, 2906 (1969).Google Scholar
  34. 34.
    R. J. W. LeFevre,Dipole Moments, (John Wiley, New York, 1953).Google Scholar
  35. 35.
    G. S. Kell and E. Whalley,Phil. Trans. (A)258, 565 (1965).Google Scholar
  36. 36.
    Y. B. Zel'dovich, S. B. Kormer, M. V. Sinitsyn, and K. B. Yushko,Dokl. Akad. Nauk SSSR 138, 1333 (1961).Google Scholar
  37. 37.
    R. W. Hamming,J. Assoc. Comp. Mach. 6, 37 (1959).Google Scholar
  38. 38.
    R. H. Stokes,J. Am. Chem. Soc. 86, 979 (1964).Google Scholar
  39. 39.
    M. J. Blandamer and M. C. R. Symons,J. Phys. Chem. 67, 1304 (1963).Google Scholar
  40. 40.
    B. S. Gourary and F. J. Adrian,Solid State Phys. 10, 127 (1960).Google Scholar
  41. 41.
    R. Zana and E. Yeager,J. Phys. Chem. 70, 954 (1966);71, 521 (1967);71, 4241 (1967).Google Scholar
  42. 42.
    M. H. Panckhurst,Rev. Pure Appl. Chem. 19, 45 (1969).Google Scholar
  43. 43.
    L. Pauling,The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1960), 3rd ed.Google Scholar
  44. 44.
    K. Fajans and O. Johnson,J. Am. Chem. Soc. 64, 668 (1942).Google Scholar
  45. 45.
    L. G. Hepler,J. Phys. Chem. 61, 1426 (1957).Google Scholar
  46. 46.
    R. H. Stokes and R. A. Robinson,Trans. Faraday Soc. 53, 301 (1957).Google Scholar
  47. 47.
    J. Padova,J. Chem. Phys. 40, 691 (1964).Google Scholar
  48. 48.
    R. H. Stokes,Australian J. Chem. 20, 2087 (1967).Google Scholar
  49. 49.
    E. Glueckauf,Proc. Roy. Soc. (A)301, 449 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • L. A. Dunn
    • 1
  1. 1.Department of ChemistryUniversity of TasmaniaHobartAustralia

Personalised recommendations