Skip to main content
Log in

Electrochemistry of copper in aqueous acetonitrile

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The electrochemical characteristics of the Cu (II)/Cu (I) and the Cu (I)/Cu (0) couples at platinum, carbon, mercury and copper have been studied in acetonitrile-water (AN-H2O) mixtures. All the electrode processes are moderately fast with mercury the fastest but slower on platinum and carbon paste in that order. A slow chemical step precedes oxidation of Cu (I) to Cu (II) on allectrodes in solutions of high AN content. The slow step may be partial removal of AN from the solvated Cu (I) ion prior to electron transfer. Electrode processes are faster in chloride ions than in sulfate ion solutions. Reduction of Cu (I) in AN−H2O is quite slow on glassy carbon. Adsorption of AN on platinum and carbon influences the processes. Diffusion coefficients in sulfate solutions are in the order, Cu (I) (AN−H2O)>Cu (II)(AN−H2O)>Fe (III)(H2O) and 2-hydroxy-cyanoethane (2-HCE) strongly decreases the mobility of Cu (I) when added to H2O. The relevance of the measurements to hydrometallurgical processes is considered. CuSO4 in 30% v/v AN−H2O is a ‘faster’ oxidant than the common oxidant Fe2(SO4)3 in H2O because of the greater mobility and faster electron acceptance from a corroding surface of Cu (II). Only in solutions of very high nitrile content is the reduction potential of CuSO4 as high as that of Fe2(SO4)3 in H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. J. Parker, W. E. Waghorne, D. E. Giles, J. H. Sharp, R. Alexander, and D. M. Muir, U. S. Pat. 3,865, 744 (Feb. 1975), Br. Pat. 1381666 (1975).

  2. A. J. Parker,Search 4, 426 (1973) and A. J. Parker and D. M. Muir,Hydrometallurgy 6, 239 (1981).

    Google Scholar 

  3. A. J. Parker and D. M. Muir,Min. Mag., 537 (1976).

  4. D. M. Muir, A. J. Parker, J. H. Sharp, and W. E. Waghorne,Hydrometallurgy 1, 61 (1975).

    Google Scholar 

  5. D. M. Muir, A. J. Parker, J. H. Sharp, and W. E. Waghorne,Hydrometallurgy 1, 155 (1975).

    Google Scholar 

  6. I. D. MacLeod, D. M. Muir, A. J. Parker, and P. Singh,Aust. J. Chem. 30, 1423 (1977).

    Google Scholar 

  7. A. J. Parker, D. A. Clarke, R. A. Couche, G. W. Miller, R. I. Tilley, and W. E. Waghorne,Aust. J. Chem. 30, 1661 (1977).

    Google Scholar 

  8. A. J. Parker, D. M. Muir, D. E. Giles, R. Alexander, E. O'Kane, and J. Avraamides,Hydrometallurgy 1, 169 (1975).

    Google Scholar 

  9. D. M. Muir, A. J. Parker, D. E. Giles,Hydrometallurgy 2, 127 (1976).

    Google Scholar 

  10. J. Pang, I. M. Ritchie, and D. E. Giles,Electrochimica Acta 20, 923 (1975).

    Google Scholar 

  11. A. J. Parker, R. L. Paul, and G. P. Power,Aust. J. Chem. 34, 13 (1981).

    Google Scholar 

  12. J. L. Anderson, and I. Shain,Anal. Chem. 48, 1274 (1976).

    Google Scholar 

  13. J. O'M. Bockris and M. Eyno,Trans. Farad. Soc. 58, 1187 (1962).

    Google Scholar 

  14. D. S. Polcyn and I. Shain,Anal. Chem. 38, 370 (1966).

    Google Scholar 

  15. D. G. Peters and S. A. Cruser,J. Electroanal. Chem. 9, 27 (1965).

    Google Scholar 

  16. R. S. Nicholson and I. Shain,Anal. Chem. 36, 706 (1964).

    Google Scholar 

  17. R. N. Adams,Electrochemistry at Solid Electrodes (Marcel Dekker Inc., New York, 1969).

    Google Scholar 

  18. D. B. Hibbert, H. Sugiarto, and A. C. C. Tseung,J. Chem. Soc. Faraday Trans I 8, 1973 (1978).

    Google Scholar 

  19. M. Eigen,Pure and Applied Chem. 6, 105 (1963).

    Google Scholar 

  20. H. A. Kozlowska, B. MacDougall, and B. E. Conway,J. Electroanal. Chem. 39, 287 (1972).

    Google Scholar 

  21. F. H. Beyerlein and R. S. Nicholson,Anal. Chem. 44, 1647 (1972).

    Google Scholar 

  22. G. Kortüm,Treatise on Electrochemistry (Elsevier. London, 1965).

    Google Scholar 

  23. N. White and F. Lawson,J. Electroanal. Chem. 26, 113 (1970).

    Google Scholar 

  24. T. Berzins and P. Delahay,J. Am. Chem. Soc. 75, 555 (1953).

    Google Scholar 

  25. S. E. Manahan and R. T. Iwamoto,J.Electroanal. Chem. 14, 213 (1967).

    Google Scholar 

  26. R. S. Nicholson,Anal. Chem. 37, 1351 (1965).

    Google Scholar 

  27. G. Mamantov, D. L. Manning, and J. M. Dale,J. Electroanal. Chem. 9, 253 (1965).

    Google Scholar 

  28. J. A. Harrison and H. R. Thirsk, inElectroanalytical Chemistry, A. J. Bard, ed., Vol. 5. (Marcel Dekker, New York, 1975).

    Google Scholar 

  29. N. White and F. Lawson,J. Electroanal. Chem. 25, 409 (1970).

    Google Scholar 

  30. R. G. Bates, inSolute-solvent Interactions, J. F. Coetzee and C. D. Ritchie, eds., (Marcel Dekker, New York, 1969).

    Google Scholar 

  31. J. A. Lanning and J. Q. Chambers,Anal. Chem. 45, 1010 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macleod, I.D., Parker, A.J. & Singh, P. Electrochemistry of copper in aqueous acetonitrile. J Solution Chem 10, 757–774 (1981). https://doi.org/10.1007/BF00649487

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00649487

Key words

Navigation