Water, Air, and Soil Pollution

, Volume 27, Issue 3–4, pp 379–389 | Cite as

Effect of iron oxide removal on heavy metal sorption by acid subsoils

  • H. A. Elliott
  • M. R. Liberati
  • C. P. Huang


The adsorption of Cd, Cu, Pb, and Zn from 0.025 M NaClO4 solutions by two ferruginous subsoils, Christiana silty clay loam and Dothan sandy clay, was investigated. Under acidic conditions, selective dissolution and removal of the Fe oxide soil component by dithionite-citrate-bicarbonate (DCB) generally increased heavy metal adsorption by the soils. This effect was attributed to increased electrostatic attraction of cations to the DCB-washed soils as evidenced by substantial reduction in the zero point of charge (ZPC) for the Dothan soil following DCB extraction. Alternately, the DCB extraction stripped Fe and Al species bound to structural exchange sites or eliminated coatings which reduce cation accessibility to such sites. Addition of low levels (10−6 M) of ferric iron suppressed heavy metal adsorption capacity of the DCB-extracted Christiana soil to values comparable to the unmodified whole soil system. While hydrous oxide surfaces represent highly reactive sites for cation binding, Fe oxides can modify both the pH-dependent and structural exchange sites in a manner which hinders heavy metal adsorption. Thus, a soil's Fe-oxide content is unlikely to be a reliable guide to heavy metal adsorption capacity.


NaClO4 Ferric Iron Selective Dissolution Metal Sorption Silty Clay Loam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biddappa, C. C., Chino, M., and Kumazawa, K.: 1981,J. Environ. Sci. Health. 16, 511.Google Scholar
  2. Cavallaro, N. and McBride, M. B.: 1984a,Soil Sci. Soc. Am. J. 48, 1050.Google Scholar
  3. Cavallaro, N. and McBride, M. B.: 1984b,Clays Clay Miner. 32, 283.Google Scholar
  4. Davis, J. A. and Leckie, J. O.: 1978,Environ. Sci. Tech. 12, 1309.Google Scholar
  5. Dion, H. G.: 1944,Soil Sci. 58, 411.Google Scholar
  6. Douglas, L. A.: 1967,Soil Sci. 103, 191.Google Scholar
  7. Dudas, M. J. and Harward, M. E.: 1971,Soil Sci. Soc. Am. Proc. 35, 134.Google Scholar
  8. Elliott, H. A. and Huang, C. P.: 1981,Water Research 15, 849.Google Scholar
  9. Elliott, H. A. and Liberati, M. R.: 1981,Properties Affecting Retention of Heavy Metals from Wastes Applied to Northeastern U.S. Soils, Proc. 13th Mid-Atlantic Waste Conf. Ann Arbor Sci., Ann Arbor, MI. p. 95.Google Scholar
  10. Elliott, H. A. and Sparks, D. L.: 1981,Soil Sci. 132, 402.Google Scholar
  11. Elliott, H. A.: 1983,Soil Sci. 136, 317.Google Scholar
  12. Forbes, E., Posner, A. M., and Quirk, J. P.: 1974,J. Colloid Interface Sci. 49, 403.Google Scholar
  13. Harter, R. D.: 1983,Soil Sci. Soc. Am. J. 47, 47.Google Scholar
  14. Jackson, M. L.: 1958,Soil Chemical Analysis, Prentice Hall Inc.Google Scholar
  15. Jenne, E. W.: 1968,Adv. Chem. Ser. 78, 337.Google Scholar
  16. Johnson, L. J. and Chu, C. H.: 1983,Mineralogical Characterization f Selected Soils from Northeastern United States, Pennsylvania Agric. Exp. Stn. Bull. No. 847, University Park, PA.Google Scholar
  17. Kinniburgh, D. G., Syers, J. K., and Jackson, M. L.: 1975,Soil Sci. Soc. Am. Proc. 39, 464.Google Scholar
  18. Kinniburgh, D. G., Jackson, M. L., and J. K. Syers: 1976,Soil Sci. Soc. Am. J. 40, 796.Google Scholar
  19. Korte, N. E., Skopp, J., Fuller, W. H., Niebla, E. E., and Alesii, B. A.: 1976,Soil Sci. 122, 350.Google Scholar
  20. Krauskopf, K. B.: 1956,Geochim. Cosmochim Acta 9, 1.Google Scholar
  21. Kuo, S. and Baker, A. S.: 1980,Soil Sci. Soc. Am. J. 44, 969.Google Scholar
  22. LeRiche, H. H. and Weir, A. H.: 1963,J. Soil Sci. 14, 225.Google Scholar
  23. Liberati, M. R.: 1983, ‘Heavy Metal Retention by Soils: Components Affecting Selectivity’, M.S. Thesis, University of Delaware, Newark, DE.Google Scholar
  24. MacKenzie, J. M. W. and O'Brien, R. T.: 1969,Trans. Am. Inst. Mining Eng. 244, 168.Google Scholar
  25. McKeague, J. M. and Day, J. H.: 1966,Can. J. Soil Sci. 46, 13.Google Scholar
  26. Mehra, O. P. and Jackson, M. L.: 1960,Clays Clay Miner. 5, 317.Google Scholar
  27. Scokert, P. O., Meeus-Verdinne, K., and DeBorger, R.: 1983,Water, Air, and Soil Poll. 20, 451.Google Scholar
  28. Shuman, L. M.: 1975,Soil Sci. Soc. Am. Proc. 39, 454.Google Scholar
  29. Shuman, L. M.: 1976,Soil Sci. Soc. Am. J. 40, 349.Google Scholar
  30. Sparks, D. L., Zelazny, L. W., and Martens, D. C.: 1980,Soil Sci. Soc. Am. J. 44, 37.Google Scholar
  31. Stryker, L. J. and Matijević, E.: 1968,Adv. Chem. Ser. 79, 44.Google Scholar
  32. Stumm, W. and O'Melia, C. R.: 1968,J. Am. Water Works Ass. 60, 514.Google Scholar
  33. Stumm, W. and Morgan, J. J.: 1970, Aquatic Chemistry, Wiley-Interscience, New York, p. 478.Google Scholar
  34. Sumner, M. E.: 1964,Clay Miner. Bull. 5, 218.Google Scholar
  35. Taylor, R. M. and McKenzie, R. M.: 1966,Aust. J. Soil Res. 4, 29.Google Scholar
  36. Tyler, L. D. and McBride, M. B.: 1982,Soil Sci. 134, 198.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • H. A. Elliott
    • 1
  • M. R. Liberati
    • 2
  • C. P. Huang
    • 2
  1. 1.Agricultural Engineering DepartmentUniversity of DelawareNewarkUSA
  2. 2.Civil Engineering DepartmentUniversity of DelawareNewarkUSA

Personalised recommendations