Astrophysics and Space Science

, Volume 25, Issue 2, pp 413–432 | Cite as

Giant elliptical galaxies: The Salpeter initial luminosity function and interstellar matter

  • A. J. Hillel


It is argued that a Salpeter initial luminosity function is consistent with the observed integral properties of giant elliptical galaxies if the gaseous material lost by evolving stars can be retained in the system for times of the order of 108 yr. One model which emerges is of a highly condensed system consisting mainly of metal-poor population II stars with an admixture (1.5%–15%) of super-metalrich stars born from the gaseous debris, which at the present time constitutes 0.05%–0.5% of the total mass. HighM/L ratios result from obscuration of the starlight, and the missing radiation reappears in the form of a strong I-R flux at wavelengths of the order of 100 μ. The difference in colour betweengE anddE galaxies is explained in terms of interstellar reddening, and strong interstellar metallic absorption lines are also expected. The model leads to a negligible evolutionary correction to the cosmological deceleration parameterq0. An alternative model, in which the stars arenot metal poor, has a more condensed, heavily obscured nucleus, surrounded by the unobscured central bulge of the Galaxy which provides most of the light. In this version a large evolutionary correction would be required.


Colour Radiation Total Mass Alternative Model Absorption Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baum, W. A.: 1959,Publ. Astron. Soc. Pacific 71, 106.Google Scholar
  2. Burbidge, G. R.: 1970,Ann. Rev. Astron. Astrophys. 8, 369.Google Scholar
  3. Burbidge, E. M. and Burbidge, G. R.: 1973, inStars and Stellar Systems 9 (ed. by A. Sandage and M. Sandage), Univ. of Chicago Press (to be published).Google Scholar
  4. Cameron, A. G. W.: 1970,Comm. Astrophys. Space Sci. 2, 209.Google Scholar
  5. Chandrasekhar, S.: 1950,Radiative Transfer, Clarendon Press, Oxford.Google Scholar
  6. Demarque, P. and Schlesinger, B. M.: 1969,Astrophys. J. 155, 965.Google Scholar
  7. Epstein, E. E.: 1964,Astron. J. 69, 490.Google Scholar
  8. Genkin, I. L. and Genkina, L. M.: 1969,Astron. Zh. 46, 1128.Google Scholar
  9. Harper, D. A. and Low, F. J.: 1971,Astrophys. J. Letters 165, L9.Google Scholar
  10. Hobbs, L. M. and Zuckerman, B.: 1972,Astrophys. J. 171, 17.Google Scholar
  11. Hoffmann, W. F., Frederick, C. L., and Emery, R. J.: 1971,Astrophys. J. Letters 170, L89.Google Scholar
  12. Hollenbach, D., Werner, M. W., and Salpeter, E. E.: 1971,Astrophys. J. 163, 165.Google Scholar
  13. kaplan, S. A. and Pikelner, S. B.: 1970,The Interstellar Medium, Harvard Univ. Press.Google Scholar
  14. King, I. R.: 1971,Publ. Astron. Soc. Pacific 83, 377.Google Scholar
  15. Limber, D. N.: 1960,Astrophys. J. 131, 168.Google Scholar
  16. Low, F. J. and Aumann, H. H.: 1970,Astrophys. J. Letters 162, L79.Google Scholar
  17. Mathews, W. G. and Baker, J. C.: 1971,Astrophys. J. 170, 241.Google Scholar
  18. McClure, R. D. and Van den Bergh, S.: 1968,Astron. J. 73, 313.Google Scholar
  19. McCuskey, S. W.: 1966,Vistas Astron. 7, 141.Google Scholar
  20. Neugebauer, G. and Becklin, E. E.: 1973,Sci. Am. 228, 28.Google Scholar
  21. Oke, J. B. and Sandage, A.: 1968,Astrophys. J. 154, 21.Google Scholar
  22. Page, T. L.: 1962,Astrophys. J. 136, 685.Google Scholar
  23. Purcell, E. M.: 1969,Astrophys. J. 158, 433.Google Scholar
  24. Reddish, V. C.: 1961,Observatory 81, 19.Google Scholar
  25. Reddish, V. C.: 1962a,Z. Astrophys. 56, 194.Google Scholar
  26. Reddish, V. C.: 1962b,Observatory 82, 14.Google Scholar
  27. Reddish, V. C.: 1966,Vistas Astron. 7, 173.Google Scholar
  28. Reddish, V. C.: 1968,Q. J. Roy. Astron. Soc. 9, 409.Google Scholar
  29. Roberts, M. S.: 1969,Astron. J. 74, 859.Google Scholar
  30. Salpeter, E. E.: 1955,Astrophys. J. 121, 161.Google Scholar
  31. Salpeter, E. E.: 1959,Astrophys. J. 129, 608.Google Scholar
  32. Sandage, A.: 1961,Astrophys. J. 134, 916.Google Scholar
  33. Sandage, A.: 1970,Phys. Today, Feb., p. 34.Google Scholar
  34. Sandage, A.: 1972,Q. J. Roy. Astron. Soc. 13, 282.Google Scholar
  35. Spinrad, H.: 1962,Astrophys. J. 135, 715.Google Scholar
  36. Spinrad, H.: 1966,Publ. Astron. Soc. Pacific 78, 367.Google Scholar
  37. Spinrad, H. and Taylor, B. J.: 1971,Astrophys. J. Suppl. 22, 445.Google Scholar
  38. Spitzer, L.: 1942,Astrophys. J. 95, 329.Google Scholar
  39. Spitzer, L.: 1968,Diffuse Matter in Space, Interscience, New York.Google Scholar
  40. Tinsley, B. M.: 1973,Astrophys. J. 178, 319.Google Scholar
  41. Van den Bergh, S.: 1971,J. Roy. Astron. Soc. Can. 65, 13.Google Scholar
  42. Wickramasinghe, N. C.: 1972, inInterstellar Matter (Swiss Society of Astronomy and Astrophysics second advanced course.), Publ. Geneva Observatory.Google Scholar
  43. Witt, A. N. and Lillie, C. F.: 1973,Astron. Astrophys. 25, 397.Google Scholar
  44. Wolfe, A. M. and Burbidge, G. R.: 1970,Astrophys. J. 161, 419.Google Scholar
  45. Wood, D. B.: 1966,Astrophys. 145,J. 36.Google Scholar

Copyright information

© D. Reidel Publishing Company 1973

Authors and Affiliations

  • A. J. Hillel
    • 1
  1. 1.Schuster LaboratoryUniversity of ManchesterEngland

Personalised recommendations