Skip to main content
Log in

Thermodynamics of ionization of water over wide ranges of temperature and pressure

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

We have summarized results of many experimental investigations of the thermodynamics of ionization of H2O(liq.) from 0–300°C and from 1.0 atm to nearly 8000 atm. Results of these investigations (equilibrium constants, enthalpies of ionization, heat capacities, partial molal volumes, and compressibilities) have been used for a number of thermodynamic calculations. It is particularly noteworthy that it is possible to use thermal data from 0–145°C with an equilibrium constant for 25°C in calculating reasonably accurate equilibrium constants for temperatures as high as 300°C. Similarly, it is possible to use volumetric data that refer to 1.0 atm in calculating useful equilibrium constants that apply for pressures as high as 2000 atm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Klotz,Chemical Thermodynamics (W. A. Benjamin, Inc., New York, 1964).

    Google Scholar 

  2. E. J. King,Acid-Base Equilibria (Pergamon Press, Inc., Oxford, England, 1965).

    Google Scholar 

  3. L. G. Hepler and E. M. Woolley, inWater; a Comprehensive Treatise, Vol. 3, F. Franks, ed. (Plenum Press, New York, 1973).

    Google Scholar 

  4. R. N. Goldberg and L. G. Hepler,J. Phys. Chem. 72, 4654 (1968).

    Google Scholar 

  5. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolyte Solutions, 3rd ed. (Reinhold Publ. Corp., New York, 1958).

    Google Scholar 

  6. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd ed., revised (Butterworths Publications Ltd., 1965).

  7. E. A. Guggenheim and J. C. Turgeon,Trans. Faraday Soc. 51, 757 (1955).

    Google Scholar 

  8. C. P. Bezboruah, M. F. G. F. C. Cameos, A. K. Covington, and J. V. Dobson,J. Chem. Soc. Faraday Trans. I,69, 949 (1973).

    Google Scholar 

  9. J. W. Larson and L. G. Hepler, inSolute-Solvent Interactions, J. F. Coetzee and C. D. Ritchie, eds. (Marcel Dekker, Inc., New York, 1969).

    Google Scholar 

  10. V. B. Parker, NSRDS-NBS 2, U.S. Dept. of Comm., Nat. Bur. of Std., Washington, D.C., 1965.

    Google Scholar 

  11. H. Ots,Acta Chem. Scand. 26, 3810 (1972).

    Google Scholar 

  12. G. Olofsson and I. Olofsson,J. Chem. Thermodyn. 5, 533 (1973).

    Google Scholar 

  13. A. K. Covington, R. A. Robinson, and R. G. Bates,J. Phys. Chem. 70, 3820 (1966).

    Google Scholar 

  14. F. J. Millero, E. V. Hoff, and L. Kahn,J. Solution Chem. 1, 309 (1972).

    Google Scholar 

  15. J. G. Mathieson and B. E. Conway,J. Solution Chem. 3, 455 (1974).

    Google Scholar 

  16. E. R. Kearns,Dissert. Abstr. B27, 130 (1966). [Quoted in ref. 14.]

    Google Scholar 

  17. T. Ackermann,Z. Electrochem. 62, 411 (1958).

    Google Scholar 

  18. C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 83, 3223 (1961).

    Google Scholar 

  19. J. C. Ahluwalia and J. W. Cobble,J. Am. Chem. Soc. 86, 5381 (1964).

    Google Scholar 

  20. W. L. Gardner, R. E. Mitchell and J. W. Cobble,J. Phys. Chem. 73, 2025 (1969).

    Google Scholar 

  21. V. P. Vasil'ev and G. A. Lobanov,Russ. J. Phys. Chem. 41, 434 (1967).

    Google Scholar 

  22. J. J. Christensen, G. L. Kimball, H. D. Johnston, and R. M. Izatt,Thermochem. Acta 4, 141 (1972).

    Google Scholar 

  23. E. C. W. Clarke and D. N. Glew,Trans. Faraday Soc. 62, 539 (1966).

    Google Scholar 

  24. G. J. Bignold, A. D. Brewer, and B. Hearn,Trans. Faraday Soc. 67, 2419 (1971).

    Google Scholar 

  25. J. V. Dobson and H. R. Thirsk,Electrochem. Acta 16, 315 (1971).

    Google Scholar 

  26. J. R. Fisher and H. L. Barnes,J. Phys. Chem. 76, 90 (1972).

    Google Scholar 

  27. D. D. Macdonald, P. Butler, and D. Owen,Can. J. Chem. 51, 2590 (1973).

    Google Scholar 

  28. F. H. Sweeton, R. E. Mesmer, and C. F. Baes, Jr.,J. Solution Chem. 3, 191 (1974).

    Google Scholar 

  29. S. D. Hamann,J. Phys. Chem. 67, 2233 (1963).

    Google Scholar 

  30. M. Whitfield,J. Chem. Eng. Data 17, 124 (1972).

    Google Scholar 

  31. E. D. Linov and P. A. Kryukov,Izv. Sibirsk. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 4, 10 (1972);Chem. Abstr. 78, 63058 (1973).

    Google Scholar 

  32. R. Arnek,Arkiv Kemi 32, 55 (1970).

    Google Scholar 

  33. B. B. Owen and S. R. Brinkley,Chem. Rev. 29, 461 (1941).

    Google Scholar 

  34. N. A. North,J. Phys. Chem. 77, 931 (1973).

    Google Scholar 

  35. D. A. Lown, H. R. Thirsk, and Lord Wynne-Jones,Trans. Faraday Soc. 64, 2073 (1968).

    Google Scholar 

  36. A. S. Quist,J. Phys. Chem. 74, 3396 (1970).

    Google Scholar 

  37. W. B. Holzapfel,J. Chem. Phys. 50, 4424 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Much of the work reported here was done while the author was on leave at the University of Lethbridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olofsson, G., Hepler, L.G. Thermodynamics of ionization of water over wide ranges of temperature and pressure. J Solution Chem 4, 127–143 (1975). https://doi.org/10.1007/BF00649154

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00649154

Key words

Navigation