Abstract
Ionic mobility data for multicomponent electrolyte systems at low concentrations are scarce due to experimental difficulties and are actually restricted to aqueous solutions of alkali chlorides. Some new results are presented which have been obtained by using a radiotracer method valid even if one of the ionic species is present at very low concentrations (tracer ion). The following electrolyte systems (two electrolytes with a common ion in a solvent) have been investigated at a 0.5N total ionic strength: NaNO3−AgNO3, KNO3−AgNO3, LiNO3−AgNO3 either in pure water or in water-rich (acetonitrile or dimethylsulfoxide) mixed solvents. Since ionic conductivity data processing by an extended law generalized to mixtures, such as that proposed by Quint and Viallard, has proved to be delicate to handle, our experimental results have been compared with the qualitative predictions of the classical Onsager-Fuoss limiting law. The main conclusion of this work is to give clear experimental evidence of the inability of any continuum theory to predict the ionic mobilities when solvent structural effect have to be taken into account. Consequently, the ionic behavior, particularly that of the Ag+ ion, has been interpreted in terms of preferential solvation and solvent microscopic structure. The trace mobility measurements reflect the maximum structural effect on the ionic transport properties.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
P. Van Rysselberghe,J. Am. Chem. Soc. 55, 990 (1933).
E. O. Timmermann,Ber. Bunsenges Phys. Chem. 83, 257 (1979).
J. Quint and A. Viallard,J. Solution Chem. 7, 137, 525, 533 (1978).
L. Onsager and R. M. Fuoss,J. Phys. Chem. 36, 2689 (1932).
L. G. Longsworth,J. Am. Chem. Soc. 52, 1897 (1930).
G. S. Kell and A. R. Gordon,J. Am. Chem. Soc. 81, 3207 (1959).
Y. Marcus,J. Solution Chem. 12, 271 (1983).
J. Quint,Ph. D. Dissertation, University of Clermont-Ferrand II, France, C.N.R.S., A.O. 12442, (1976).
M. Perie, J. Perie, and M. Chemla,Electrochim. Acta. 19, 753 (1974).
M. Perie, J. Perie and M. Chemla,Electrochim. Acta. 21, 739 (1976).
A. Poisson, M. Perie, J. Perie and M. Chemla,J. Solution Chem. 8, 377 (1979).
J. R. Gwyther and M. Spiro,J. Chem. Soc. Faraday I 72, 1410 (1976).
M. Peire and J. Perie,J. Chimie Phys. 79, 499 (1982).
G. Jones and J. H. Colvin,J. Am. Chem. Soc. 62, 338 (1940).
G. J. Janz, B. G. Oliver, G. R. Lakshminarayanan, and G. E. Mayer,J. Phys. Chem. 74, 1285 (1970).
J.-C. Justice, J. Perie, and M. Perie,J. Solution Chem. 9, 583 (1980).
W. Ebeling, W. D. Kraeft, and D. Kremp,J. Phys. Chem. 70, 3338 (1966);Ann. Phys. (Leipzig) 18, 246 (1966).
D. G. Miller,J. Phys. Chem. 71, 3588 (1967).
H. G. Hertz,Ber. Bunsenges. Physik. Chem. 81, 656 (1977).
L. A. Woolf,J. Phys. Chem. 82, 959 (1978).
L. Onsager and S. K. Kim,J. Phys. Chem. 61, 215 (1957).
M. S. Chen,Ph. D. Thesis, Yale University, (1969);J. Solution Chem. 8, 509 (1979).
H. Friedman inChemical Physics of Ionic Solutions, B. E. Conway and R. G. Barradas, eds., (Wiley, New York, 1965), p. 487.
J.-C. Justice inComprehensive Treatise of Electrochemistry, Vol. 5, B. E. Conway, J. O'. M. Bockris, and E. Yeager, eds., (Plenum Press, New York, 1983), p. 304.
L. G. Longsworth,J. Am. Chem. Soc. 54, 2741 (1932).
A. K. Covington and J. E. Prue,J. Chem. Soc. 1567 (1957).
G. Marx, L. Fischer, and W. Schulze,Radiochim. Acta 2, 9 (1963).
B. G. Cox, A. J. Parker and W. E. Waghorne,J. Phys. Chem. 78, 1731 (1974).
A. J. Parker,Pure and Appl. Chem. 53, 1437 (1981).
D. A. Armitage, M. J. Blandamer, M. J. Foster, N. J. Hioden, K. W. Morcom, M. C. R. Symons and M. J. Wootten,Trans. Faraday Soc. 64, 1193 (1968).
C. Moreau and G. Douheret,Thermochim. Acta 13, 385 (1975).
T. Tokuhiro, L. Menafra and H. H. Szmant,J. Chem. Phys. 61, 2275 (1974).
I. D. MacKenzie and R. M. Fuoss,J. Phys. Chem. 73, 1501 (1969).
M.-C. Justice, R. Bury and J.-C. Justice,Electrochim. Acta. 16, 687 (1971).
R. L. Kay, D. F. Evans, and M. A. Matesich inSolute-Solvent Interactions, Vol. 2, J. F. Coetzee and C. D. Ritchie, eds., (Dekker, New York, 1976).
H. Strehlow and H. M. Koepp,Z. Elektrochem. Ber. Bunsenges. Physik. Chem. 62, 373 (1958).
Y. C. Chiu and R. M. Fuoss,J. Phys. Chem. 72, 4124 (1968).
A. W. Allgood, D. J. Leroy, and A. R. Gordon,J. Chem. Phys. 8, 418 (1940).
T. Shedlovsky,J. Am. Chem. Soc. 54, 1411 (1932)
L. G. Longsworth,J. Am. Chem. Soc. 54, 2741 (1932).
L. G. Longsworth,J. Am. Chem. Soc. 57, 1185 (1935).
G. A. Vidulich, D. F. Evans and R. L. Kay,J. Phys. Chem. 71, 656 (1967).
G. Petrella, M. Castagnolo, A. Sacco, and M. Petrella,J. Solution Chem. 9, 331 (1980).
G. Petrella, M. Petrella, M. Castagnolo, A. Dell'Atti and A. De Giglio,J. Solution Chem. 10, 129 (1981).
W. H. Lee and R. J. Wheaton,J. Chem. Soc. Faraday Trans. II 74, 743, 1456 (1978).
W. H. Lee and R. J. Wheaton,J. Chem. Soc. Faraday Trans. II,75, 1128 (1979)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Perie, M., Perie, J. & Chemla, M. Multicomponent electrolyte systems: Dependence of ionic mobilities on aqueous organic solvent structure. J Solution Chem 13, 721–748 (1984). https://doi.org/10.1007/BF00649011
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00649011