Skip to main content
Log in

Multicomponent electrolyte systems: Dependence of ionic mobilities on aqueous organic solvent structure

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Ionic mobility data for multicomponent electrolyte systems at low concentrations are scarce due to experimental difficulties and are actually restricted to aqueous solutions of alkali chlorides. Some new results are presented which have been obtained by using a radiotracer method valid even if one of the ionic species is present at very low concentrations (tracer ion). The following electrolyte systems (two electrolytes with a common ion in a solvent) have been investigated at a 0.5N total ionic strength: NaNO3−AgNO3, KNO3−AgNO3, LiNO3−AgNO3 either in pure water or in water-rich (acetonitrile or dimethylsulfoxide) mixed solvents. Since ionic conductivity data processing by an extended law generalized to mixtures, such as that proposed by Quint and Viallard, has proved to be delicate to handle, our experimental results have been compared with the qualitative predictions of the classical Onsager-Fuoss limiting law. The main conclusion of this work is to give clear experimental evidence of the inability of any continuum theory to predict the ionic mobilities when solvent structural effect have to be taken into account. Consequently, the ionic behavior, particularly that of the Ag+ ion, has been interpreted in terms of preferential solvation and solvent microscopic structure. The trace mobility measurements reflect the maximum structural effect on the ionic transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. P. Van Rysselberghe,J. Am. Chem. Soc. 55, 990 (1933).

    Google Scholar 

  2. E. O. Timmermann,Ber. Bunsenges Phys. Chem. 83, 257 (1979).

    Google Scholar 

  3. J. Quint and A. Viallard,J. Solution Chem. 7, 137, 525, 533 (1978).

    Google Scholar 

  4. L. Onsager and R. M. Fuoss,J. Phys. Chem. 36, 2689 (1932).

    Google Scholar 

  5. L. G. Longsworth,J. Am. Chem. Soc. 52, 1897 (1930).

    Google Scholar 

  6. G. S. Kell and A. R. Gordon,J. Am. Chem. Soc. 81, 3207 (1959).

    Google Scholar 

  7. Y. Marcus,J. Solution Chem. 12, 271 (1983).

    Google Scholar 

  8. J. Quint,Ph. D. Dissertation, University of Clermont-Ferrand II, France, C.N.R.S., A.O. 12442, (1976).

  9. M. Perie, J. Perie, and M. Chemla,Electrochim. Acta. 19, 753 (1974).

    Google Scholar 

  10. M. Perie, J. Perie and M. Chemla,Electrochim. Acta. 21, 739 (1976).

    Google Scholar 

  11. A. Poisson, M. Perie, J. Perie and M. Chemla,J. Solution Chem. 8, 377 (1979).

    Google Scholar 

  12. J. R. Gwyther and M. Spiro,J. Chem. Soc. Faraday I 72, 1410 (1976).

    Google Scholar 

  13. M. Peire and J. Perie,J. Chimie Phys. 79, 499 (1982).

    Google Scholar 

  14. G. Jones and J. H. Colvin,J. Am. Chem. Soc. 62, 338 (1940).

    Google Scholar 

  15. G. J. Janz, B. G. Oliver, G. R. Lakshminarayanan, and G. E. Mayer,J. Phys. Chem. 74, 1285 (1970).

    Google Scholar 

  16. J.-C. Justice, J. Perie, and M. Perie,J. Solution Chem. 9, 583 (1980).

    Google Scholar 

  17. W. Ebeling, W. D. Kraeft, and D. Kremp,J. Phys. Chem. 70, 3338 (1966);Ann. Phys. (Leipzig) 18, 246 (1966).

    Google Scholar 

  18. D. G. Miller,J. Phys. Chem. 71, 3588 (1967).

    Google Scholar 

  19. H. G. Hertz,Ber. Bunsenges. Physik. Chem. 81, 656 (1977).

    Google Scholar 

  20. L. A. Woolf,J. Phys. Chem. 82, 959 (1978).

    Google Scholar 

  21. L. Onsager and S. K. Kim,J. Phys. Chem. 61, 215 (1957).

    Google Scholar 

  22. M. S. Chen,Ph. D. Thesis, Yale University, (1969);J. Solution Chem. 8, 509 (1979).

    Google Scholar 

  23. H. Friedman inChemical Physics of Ionic Solutions, B. E. Conway and R. G. Barradas, eds., (Wiley, New York, 1965), p. 487.

    Google Scholar 

  24. J.-C. Justice inComprehensive Treatise of Electrochemistry, Vol. 5, B. E. Conway, J. O'. M. Bockris, and E. Yeager, eds., (Plenum Press, New York, 1983), p. 304.

    Google Scholar 

  25. L. G. Longsworth,J. Am. Chem. Soc. 54, 2741 (1932).

    Google Scholar 

  26. A. K. Covington and J. E. Prue,J. Chem. Soc. 1567 (1957).

  27. G. Marx, L. Fischer, and W. Schulze,Radiochim. Acta 2, 9 (1963).

    Google Scholar 

  28. B. G. Cox, A. J. Parker and W. E. Waghorne,J. Phys. Chem. 78, 1731 (1974).

    Google Scholar 

  29. A. J. Parker,Pure and Appl. Chem. 53, 1437 (1981).

    Google Scholar 

  30. D. A. Armitage, M. J. Blandamer, M. J. Foster, N. J. Hioden, K. W. Morcom, M. C. R. Symons and M. J. Wootten,Trans. Faraday Soc. 64, 1193 (1968).

    Google Scholar 

  31. C. Moreau and G. Douheret,Thermochim. Acta 13, 385 (1975).

    Google Scholar 

  32. T. Tokuhiro, L. Menafra and H. H. Szmant,J. Chem. Phys. 61, 2275 (1974).

    Google Scholar 

  33. I. D. MacKenzie and R. M. Fuoss,J. Phys. Chem. 73, 1501 (1969).

    Google Scholar 

  34. M.-C. Justice, R. Bury and J.-C. Justice,Electrochim. Acta. 16, 687 (1971).

    Google Scholar 

  35. R. L. Kay, D. F. Evans, and M. A. Matesich inSolute-Solvent Interactions, Vol. 2, J. F. Coetzee and C. D. Ritchie, eds., (Dekker, New York, 1976).

    Google Scholar 

  36. H. Strehlow and H. M. Koepp,Z. Elektrochem. Ber. Bunsenges. Physik. Chem. 62, 373 (1958).

    Google Scholar 

  37. Y. C. Chiu and R. M. Fuoss,J. Phys. Chem. 72, 4124 (1968).

    Google Scholar 

  38. A. W. Allgood, D. J. Leroy, and A. R. Gordon,J. Chem. Phys. 8, 418 (1940).

    Google Scholar 

  39. T. Shedlovsky,J. Am. Chem. Soc. 54, 1411 (1932)

    Google Scholar 

  40. L. G. Longsworth,J. Am. Chem. Soc. 54, 2741 (1932).

    Google Scholar 

  41. L. G. Longsworth,J. Am. Chem. Soc. 57, 1185 (1935).

    Google Scholar 

  42. G. A. Vidulich, D. F. Evans and R. L. Kay,J. Phys. Chem. 71, 656 (1967).

    Google Scholar 

  43. G. Petrella, M. Castagnolo, A. Sacco, and M. Petrella,J. Solution Chem. 9, 331 (1980).

    Google Scholar 

  44. G. Petrella, M. Petrella, M. Castagnolo, A. Dell'Atti and A. De Giglio,J. Solution Chem. 10, 129 (1981).

    Google Scholar 

  45. W. H. Lee and R. J. Wheaton,J. Chem. Soc. Faraday Trans. II 74, 743, 1456 (1978).

    Google Scholar 

  46. W. H. Lee and R. J. Wheaton,J. Chem. Soc. Faraday Trans. II,75, 1128 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perie, M., Perie, J. & Chemla, M. Multicomponent electrolyte systems: Dependence of ionic mobilities on aqueous organic solvent structure. J Solution Chem 13, 721–748 (1984). https://doi.org/10.1007/BF00649011

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00649011

Key Words

Navigation