Skip to main content
Log in

Isentropic compressibilities of univalent electrolytes in methanol at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A flow densimeter and an ultrasonic sound velocimeter have been used to measure densities and isentropic compressibilities of solutions of LiBr, NaCl, NaBr, Nal, KF, KCl, KBr, Kl, RbBr, Rbl, CsF, CsBr, Ph 4 PBr, and NaBPh 4 in anhydrous methanol at 25°C. the latter two electrolytes were also investigated in water at 25°C. Concentrations ranged from about 0.005 m to above 0.25m, solubility permitting. Apparent molar isentropic compressibilities, KS,ϕ, have been calculated and extrapolated to infinite dilution to obtain K oS,ϕ . The K oS,ϕ values in methanol are all negative, and significantly more negative than the corresponding data in water. Additional data from the literature for acetonitrile and ethanol solutions show that K oS,ϕ for the alkali metal halides become more negative in direct proportion to increasing solvent isentropic compressibility. Furthermore, the dependence of K oS,ϕ in ionic size also varies in proportion to solvent isentropic compressibility. An explanation of this behavior is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Garnsey, R. J. Boe, R. Mahoney, and T. A. Litovitz,J. Chem. Phys. 50, 5222 (1969).

    Google Scholar 

  2. J. G. Mathieson and B. E. Conway,J.C.S. Faraday Trans. I 70, 752 (1974).

    Google Scholar 

  3. J. G. Mathieson and B. E. Conway,J. Solution Chem. 3, 455 (1974).

    Google Scholar 

  4. F. T. Gucker, D. Stubley, and D. J. Hill,J. Chem. Thermodyn. 7, 865 (1975).

    Google Scholar 

  5. M. Sakurai, T. Nakajima, T. Komatsu, and T. Nakagama,Chem. Letters (9), 971 (1975).

    Google Scholar 

  6. F. J. Millero, G. K. Ward, and P. V. Chetirkin,J. Acous. Soc. Amer. 61, 1492 (1977).

    Google Scholar 

  7. F. T. Gucker, D. Stubley, and D. J. Hill,J. Chem. Thermodyn. 9, 987 (1977).

    Google Scholar 

  8. E. Ayranci and B. E. Conway,J.C.S. Faraday Trans. 1 79, 1357 (1983).

    Google Scholar 

  9. F. J. Millero, J. Ricco, and D. R. Schreiber,J. Solution Chem. 11, 671 (1982).

    Google Scholar 

  10. H. Holland and O. J. Kvammen,J. Chem. Eng. Data 28, 179 (1983).

    Google Scholar 

  11. F. Kawaizumi, K. Matsumoto, and H. Nomura,J. Phys. Chem. 87, 3161 (1983).

    Google Scholar 

  12. I. Davidson, G. Perron, and J. E. Desnoyers,Can. J. Chem. 59, 2212 (1981).

    Google Scholar 

  13. A. S. Kaurova and G. P. Roshchina,Soviet Phys.-Acous. 12, 95 (1966).

    Google Scholar 

  14. A. S. Kaurova and G. P. Roshchina,Soviet Phys-Acous. 12, 276 (1967).

    Google Scholar 

  15. D. S. Allam, Ph.D. Thesis, University of London (1963).

  16. D. S. Allam, and W. H. Lee,J. Chem. Soc. 6049 (1964).

  17. D. S. Allam and W. H. Lee,J. Chem. Soc. (A)6, 5 (1966).

    Google Scholar 

  18. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  19. A. J. Pasztor and C. M. Criss,J. Solution Chem. 7, 27 (1978).

    Google Scholar 

  20. C. Shin and C. M. Criss, unpublished data.

  21. Instruction Manual for Nusonics Model 6105 Sonic Solution Monitor.

  22. V. A. Del Grosso and C. W. Mader,J. Acoust. Soc. Amer. 52, 1442 (1972).

    Google Scholar 

  23. J. Lara and J. E. Desnoyers,J. Solution Chem. 10, 465 (1981).

    Google Scholar 

  24. O. Kiyohara and G. C. Benson,J. Solution Chem. 10, 281 (1981).

    Google Scholar 

  25. B. Pesce and A. Giacomini,Ric. Sci. 11, 619 (1940).

    Google Scholar 

  26. W. D. T. Dale, P. A. Flarelle, and P. Kruus,Can. J. Chem. 54, 355 (1976).

    Google Scholar 

  27. J. Emergy and S. Gasse,Acustica 43, 205 (1979).

    Google Scholar 

  28. R. C. Wilhoit and B. J. Swolinski,J. Phys. Chem. Ref. Data 2, 1 (1973).

    Google Scholar 

  29. D. O. Masson,Phil. Mag. 8, 218 (1929).

    Google Scholar 

  30. O. Redlich and P. Rosenfeld,Z. Electrochem. 37, 705 (1931); D. Redlich and D. M. Meyer,Chem. Rev. 64, 221 (1964).

    Google Scholar 

  31. F. J. Millero, inActivity Coefficients in Electrolyte Solutions, Vol. 2, R. M. Pytkowicz, ed., (CRC Press, Boca Raton, 1979).

    Google Scholar 

  32. F. J. Millero,J. Solution Chem. 2, 1 (1973).

    Google Scholar 

  33. P. S. Z. Rogers, and K. S. Pitzer,J. Phys. and Chem. Ref. Data 11, 15 (1982).

    Google Scholar 

  34. B. B. Owen, R. C. Miller, C. E. Milner, and H. L. Cogan,J. Phys. Chem. 65, 2065 (1961).

    Google Scholar 

  35. C. Chem, R. A. Fine, and F. J. Millero,J. Chem. Phys. 66, 2142 (1977).

    Google Scholar 

  36. H. Hartmann, A. Neumann, and G. Rinck,Z. Phys. Chem. Neue Folge 44, 204 (1965).

    Google Scholar 

  37. E. Schadow and R. Steiner,Z. Phys. Chem. Neue Folge,66, 105 (1969).

    Google Scholar 

  38. K. Srinivasan and R. L. Kay,J. Solution Chem. 4, 299 (1975);6, 357 (1977).

    Google Scholar 

  39. B. Sahli, H. Gager, and A. Richard,J. Chem. Thermodyn. 8, 179 (1976).

    Google Scholar 

  40. B. E. Conway and R. E. Verrall,J. Phys. Chem. 70, 3952 (1966).

    Google Scholar 

  41. L. H. Laliberte and B. E. Conway,J. Phys. Chem. 74, 4116 (1970).

    Google Scholar 

  42. F. Kawaizumi and R. Zana,J. Phys. Chem. 78, 627 (1974).

    Google Scholar 

  43. M. Dack,Austr. J. Chem. 29, 779 (1976).

    Google Scholar 

  44. D. Bradley and K. Pitzer,J. Phys., Chem. 12, 1599 (1979).

    Google Scholar 

  45. R. French and C. M. Criss,J. Solution Chem. 11, 625 (1982).

    Google Scholar 

  46. L. G. Hepler,J. Phys. Chem. 61, 1426 (1957).

    Google Scholar 

  47. Y. Choi and C. M. Criss,Disc. Faraday Soc. 64, 204 (1978).

    Google Scholar 

  48. R. Zana, G. A. Lage, and C. M. Criss,J. Solution Chem. 9, 667 (1980).

    Google Scholar 

  49. J. T. Edward,J. Chem. Educ. 47, 261 (1970).

    Google Scholar 

  50. C. M. Criss, R. P. Held, and E. Luksha,J. Phys. Chem. 74, 2970 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lankford, J.I., Holladay, W.T. & Criss, C.M. Isentropic compressibilities of univalent electrolytes in methanol at 25°C. J Solution Chem 13, 699–720 (1984). https://doi.org/10.1007/BF00649010

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00649010

Key Words

Navigation