Journal of Solution Chemistry

, Volume 5, Issue 2, pp 87–106 | Cite as

Molar volumes and ion pairing of lithium halides in alcohols

  • Y. Marcus
  • N. Ben-Zwi
  • I. Shiloh
Article

Abstract

The concentration dependence of the apparent molar volumes of lithium halides (and electrolytes in general) in alcohols (and solvents permitting association in general) is, in the first instance, due to changes in the degree of association and to the inherent difference between the apparent molar volumes of the ions and of the ion pairs. Previous publications on the molar volumes of electrolytes in organic solvents, disregarding altogether ion pairing, appear to be incorrect. Data from the literature for lithium chloride and lithium bromide in normal primary alcohols and several branched alcohols from C1 to C8 and data from our laboratory for lithium halides in 1-hexanol and 2-ethyl-1-hexanol served for the determination of φ V and φ E . Electrical and structural contributions to the values of these functions for the ions and for the ion pairs are discussed.

Key Words

Alcohols electrolytes electrostriction ion pairing lithium bromide lithium chloride molar expansibility molar volume nonaqueous 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Marcus,J. Chem. Eng. Data 20, 141 (1975).CrossRefGoogle Scholar
  2. 2.
    W. L. Masterton, H. Wells, J. H. Knox, and F. J. Millero,J. Solution Chem. 3, 91 (1974).CrossRefGoogle Scholar
  3. 3.
    P. Hemmes,J. Phys. Chem. 76, 895 (1972).CrossRefGoogle Scholar
  4. 4.
    I. Shiloh, M.Sc. Thesis, Hebrew University of Jerusalem, 1974.Google Scholar
  5. 5.(a)
    W. C. Vosburgh, L. C. Connell, and J. A. V. Butler,J. Chem. Soc.,1933, 933;Google Scholar
  6. 5.(b)
    R. E. Gibson and J. F. Kincaid,J. Am. Chem. Soc.,59, 579 (1937).CrossRefGoogle Scholar
  7. 5.(c)
    S. Minc and J. Sobkowski,Rocz. Chem. 33, 769 (1959).Google Scholar
  8. 5.(d)
    A. S. Kaurova and G. P. Roschina,Sov. Phys. Acoust. 12, 276 (1967).Google Scholar
  9. 5.(e)
    F. Kawaizumi and R. Zana,J. Phys. Chem. 78, 1099 (1974).CrossRefGoogle Scholar
  10. 6.
    J. T. Denison and J. B. Ramsay,J. Am. Chem. Soc. 77, 2615 (1955).CrossRefGoogle Scholar
  11. 7.
    R. M. Fuoss,J. Am. Chem. Soc. 80, 5059 (1958).CrossRefGoogle Scholar
  12. 8.
    N. Bjerrum,K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 7, No. 9 (1926).Google Scholar
  13. 9.
    H. E. Wirth,J. Phys. Chem. 71, 2922 (1967).CrossRefGoogle Scholar
  14. 10.
    O. Redlich and D. M. Meyer,Chem. Rev. 64, 221 (1964).CrossRefGoogle Scholar
  15. 11.
    A. M. Shkodin, L. P. Sadovnichaya, and V. A. Podolyanko,Elektrokhimiya 4, 718 (1968).Google Scholar
  16. 12.
    J. R. Graham, G. S. Kell, and A. R. Gordon,J. Am. Chem. Soc. 79, 2352 (1957).CrossRefGoogle Scholar
  17. 13.
    D. F. Evans, J. Thomas, J. A. Nadas, and M. A. Matesich,J. Phys. Chem. 75, 1714 (1971).CrossRefGoogle Scholar
  18. 14.
    T. Noveske, J. Stuehr, and D. F. Evans,J. Solution Chem. 1, 93 (1972).CrossRefGoogle Scholar
  19. 15.
    P. A. Skabichevskii,Zh. Fiz. Khim. 46, 531, 532 (1972).Google Scholar
  20. 16.
    M. J. Blandamer, D. E. Clark, N. J. Hidden, and M. C. R. Symons,Trans. Faraday Soc. 64, 2683 (1958); N. I. Pirtskhalava and Z. I. Machenidze,Zh. Obshch. Khim. 43, 487 (1973).CrossRefGoogle Scholar
  21. 17.
    A. M. Sukhotin and E. M. Ryzhkov,Zh. Fiz. Khim. 34, 762 (1960); H. V. Venkatasetty and G. H. Brown,J. Phys. Chem. 66, 2077 (1962).Google Scholar
  22. 18.
    Y. Marcus, to be published.Google Scholar
  23. 19.
    B. B. Owen and S. R. Brinkley, Jr.,Phys. Rev. 64, 32 (1943).CrossRefGoogle Scholar
  24. 20.
    J. Padova,J. Chem. Phys. 56, 1606 (1972).CrossRefGoogle Scholar
  25. 21.
    G. Pistoia, A. M. Polcaro, and S. Schiavo,Ric. Sci. 37, 227 (1967).Google Scholar
  26. 22.
    J. E. Desnoyers, M. Arel, G. Perron, and J. Jolicoeur,J. Phys. Chem. 73, 3346 (1969).CrossRefGoogle Scholar
  27. 23.
    J. A. Riddick and W. B. Bunger,Organic Solvents, 3rd ed. (Wiley-Interscience, New York, 1970), p. 168.Google Scholar
  28. 24.
    J. Einfeldt and E. Gedes,Z. Phys. Chem. 246, 221 (1971).Google Scholar
  29. 25.
    E. Schreiner,Z. Phys. Chem. A135, 461 (1928); J. A. V. Butler and A. P. Lees,Proc. Roy. Soc. 131, 382 (1931).Google Scholar
  30. 26.
    W. R. Gilkerson,J. Chem. Phys. 25, 1199 (1965).CrossRefGoogle Scholar
  31. 27.
    W. L. Marshall,J. Phys. Chem. 74, 346 (1970); F. J. Millero and W. L. Masterton,J. Phys. Chem. 78, 1287 (1974).CrossRefGoogle Scholar
  32. 28.
    G. J. Janz, F. W. Dampier, G. R. Lakshminarayanan, P. K. Lorenz, and R. P. T. Tomkins,Molten Salts: Vol. I, Electrical Conductance, Density, and Viscosity Data, NSRDS-NBS 15, National Bureau of Standards, Washington, D.C., 1968, p. 114.Google Scholar
  33. 29.
    M. Born,Z. Phys. 1, 45 (1920).CrossRefGoogle Scholar
  34. 30.(a)
    L. G. Hepler,J. Phys. Chem. 61, 1426 (1957).CrossRefGoogle Scholar
  35. 30.(b)
    F. J. Millero,J. Phys. Chem. 73, 2417 (1969).CrossRefGoogle Scholar
  36. 30.(c)
    F. Kawaizumi and R. Zana,J. Phys. Chem. 78, 627 (1974).CrossRefGoogle Scholar
  37. 31.
    F. J. Millero,Chem. Rev. 71, 147 (1971).CrossRefGoogle Scholar
  38. 32.
    F. J. Millero,J. Phys. Chem. 72, 4589 (1968).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Y. Marcus
    • 1
  • N. Ben-Zwi
    • 1
  • I. Shiloh
    • 1
  1. 1.Department of Inorganic and Analytical ChemistryHebrew University of JerusalemJerusalemIsrael

Personalised recommendations