Abstract
Equations are presented for the analysis of ternary free-diffusion processes in liquid systems by the Rayleigh optical interferometric method. Four different analytical derivations are given and two numerical methods of analysis are discussed.
Similar content being viewed by others
References
H. Fujita and L. J. Gosting,J. Am. Chem. Soc. 78, 1099 (1956).
H. Fujita and L. J. Gosting,J. Phys. Chem. 64, 1256 (1960).
J. M. Creeth and L. J. Gosting,J. Phys. Chem. 62, 58 (1958).
J. G. Kirkwood, R. L. Baldwin, P. J. Dunlop, L. J. Gosting, and G. Kegeles,J. Chem. Phys. 33, 1505 (1960).
Donald G. Miller, private communication, Lawrence Livermore Laboratory, Livermore, California.
J. M. Creeth,J. Am. Chem. Soc. 77, 6428 (1955).
Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, eds., Natl. Bur. Stand., U. S. Printing Office, Washington, D.C. (1970), pp. 297–309.
E. W. Ng and M. Geller,J. Res. Natl. Bur. Stand., Sect. B 73, 1 (1969).
M. Geller and E. W. Ng,J. Res. Natl. Bur. Stand., Sect. B 75, 149 (1971).
H. Fujita,J. Phys. Soc. Jpn. 11, 1018 (1956).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Albright, J.G., Sherrill, B.C. Methods for the analysis of ternary free-diffusion processes by the Rayleigh optical interferometric method. J Solution Chem 8, 201–215 (1979). https://doi.org/10.1007/BF00648880
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00648880