Astrophysics and Space Science

, Volume 119, Issue 1, pp 159–166 | Cite as

Formation of the solar system

  • J. J. Rawal


Prentice (1978a, b), in his modern Laplacian theory of the origin of the solar system, has established a scenario in which he finds the ratio of the orbital radii of successively disposed gaseous rings to be a constant ≃1.69. In an attempt to understand this law in an alternative way, Rawal (1984a) assumes that during the collapse of the solar nebula the halts at various radii are brought about by the supersonic turbulent convection and arrives at the relation of the formRp=Rap, whereR is the radius of the present Sun anda=1.422, is referred to, here, as the ‘Roche’ constant. Kepler's third law assumes the form:Tp=T0(a3/2) p ,T0 being the rotational period of the Sun at the time it attained its present radius.R p satisfy Laplace's resonance relation without any exception. The present paper investigates inter-relations among the concepts of supersonic turbulent convection, rotational instability, and Roche limit.


Convection Solar System Rotational Period Solar Nebula Rotational Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfvén, H. and Arrhenius, G.: 1970a,Astrophys. Space Sci. 8, 338.Google Scholar
  2. Alfvén, H. and Arrhenius, G.: 1970b,Astrophys. Space Sci. 9, 3.Google Scholar
  3. Cameron, A. G. W.: 1962,Icarus 1, 13.Google Scholar
  4. Dermott, S. F.: 1968,Monthly Notices Roy. Astron. Soc. 141, 363.Google Scholar
  5. Hayashi, C.: 1961,Publ. Astron. Soc. Japan 13, 450.Google Scholar
  6. Hayashi, C.: 1966,Ann. Rev. Astron. Astrophys. 4, 171.Google Scholar
  7. Jeans, J. H.: 1928,Astronomy and Cosmogony; Cambridge Univ. Press, London.Google Scholar
  8. Larson, R. B.: 1969,Monthly Notices Roy. Astron. Soc. 145, 271.Google Scholar
  9. Monaghan, J. J. and Roxburgh, I. W.: 1965,Monthly Notices Roy. Astron. Soc. 131, 13.Google Scholar
  10. Nieto, M. M.: 1972,The Titius-Bode Law of Planetary Distances, Its History and Theory, Pergamon, Oxford.Google Scholar
  11. Prentice, A. J. R.: 1973,Astron. Astrophys. 27, 234.Google Scholar
  12. Prentice, A. J. R.: 1978a, in S. F. Dermott (ed.),The Origin of the Solar System, Wiley, London, p. 111.Google Scholar
  13. Prentice, A. J. R.: 1978b,The Moon and the Planets 19, 341.Google Scholar
  14. Prentice, A. J. R. and ter Haar,.: 1971,Monthly Notices Roy. Astron. Soc. 151, 177.Google Scholar
  15. Rawal, J. J.: 1978,Bull. Astron. Soc. India 6, 72.Google Scholar
  16. Rawal, J. J.: 1981,The Moon and the Planets 24, 407.Google Scholar
  17. Rawal, J. J.: 1982,Indian J. Radio Space Phys. 11, 100.Google Scholar
  18. Rawal, J. J.: 1984,Earth, Moon, Planets 31, 175.Google Scholar
  19. Rawal, J. J.: 1985,Earth, Moon, Planets, in press.Google Scholar
  20. Reddish, V. C. and Wickramasinghe, N. C.: 1969,Monthly Notices Roy. Astron. Soc. 143, 189.Google Scholar
  21. Reeves, H.: 1978, in S. F. Dermott (ed.),The Origin of the Solar System, Wiley, London.Google Scholar
  22. ter Haar, D.: 1950,Astrophys. J. 111, 179.Google Scholar
  23. ter Haar, D.: 1967,Ann. Rev. Astron. Astrophys. 5, 267.Google Scholar
  24. ter Haar, D. and Cameron, A. G. W.: 1963, in R. Jastrow and A. G. W. Cameron (eds.),The Origin of the Solar System, Academic Press, New York, p. 1.Google Scholar
  25. Schatzman, E.: 1967,Ann. Astrophys. 30, 963.Google Scholar
  26. Schatzman, E.: 1971, in C. de Jager (ed.),Highlights of Astronomy, D. Reidel Publ. Co., Dordrecht, Holland, Vol. 2, p. 197.Google Scholar
  27. Weber, E. J. and Davis, L., Jr.: 1967,Astrophys. J. 148, 217.Google Scholar
  28. Williams, I. P. and Cremin, A. W.: 1968,Quart. J. Roy. Astron. Soc. 9, 40.Google Scholar
  29. Woolfson, M. M.: 1969,Rep. Progr. Phys. 32, 135.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • J. J. Rawal
    • 1
  1. 1.Nehru Planetarium, Nehru CentreBombayIndia

Personalised recommendations