Skip to main content
Log in

An analysis of the total ion-solvent encounter configuration of ClO 4 and BF 4 with Na+ and Li+ in water, studied by various nuclear magnetic relaxation times. Part 21

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Proton relaxation rates of the solvent water in NaClO4, NaBF4, LiClO4, and NiBF4 solutions together with some self-diffusion coefficients are reported and interpreted in terms of structure-breaking effects.19F relaxation rates in7LiBF4 and6LiBF4 solutions in D2O have been measured, and the relaxation contribution caused by7Li+ has been evaluated to give a cation-anion model pair distribution function.7Li relaxation rates in H2O and D2O are also reported, and conclusions concerning the hydration structure of Li+ have been drawn. The strong relaxation effects caused by the ions BF 4 and ClO 4 on23Na+ and7Li+ have been subjected to a detailed analysis, and combined ion-solvent encounter configurations are presented which yield an electric field gradient strong enough to cause the observed effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Contreras and H. G. Hertz,Disc. Faraday Soc., 64 (1978).

  2. G. W. Brady,J. Chem. Phys. 29, 1371 (1958);33, 1079 (1960).

    Google Scholar 

  3. R. M. Lawrence and R. F. Kruh,J. Chem. Phys. 43, 2163 (1965).

    Google Scholar 

  4. H. Bertagnolli, J. U. Weidner, and H. W. Zimmermann,Ber. Bunsenges. Phys. Chem. 78, 2 (1974).

    Google Scholar 

  5. A. H. Narten,J. Chem. Phys. 56, 5681 (1972).

    Google Scholar 

  6. A. H. Narten, F. Vaslov, and H. A. Levy,J. Chem. Phys. 58, 5017 (1973).

    Google Scholar 

  7. A. H. Narten,J. Phys. Chem. 74, 765 (1970).

    Google Scholar 

  8. J. E. Enderby,Proc. Roy. Soc. London Ser. A 345, 107 (1975).

    Google Scholar 

  9. J. E. Enderby private communication; G. W. Neilson, R. A. Howe, and J. E. Enderby,Chem. Phys. Lett. 33, 284 (1975).

    Google Scholar 

  10. A. Abragam,The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).

    Google Scholar 

  11. T. C. Farrar and E. D. Becker,Pulse and Fourier Transform NMR (Academic Press, New York, 1971).

    Google Scholar 

  12. H. G. Hertz, inProgress in NMR Spectroscopy Vol. 3, J. W. Emsley, J. Feeney and L. H. Sucliffe, eds. (Pergamon Press, London 1967);Water, A Comprehensive Treatise, F. Franks, ed. (Plenum Press, New York, 1973), p. 301.

    Google Scholar 

  13. H. G. Hertz,Ber. Bunsenges. Phys. Chem. 67 688 (1973).

    Google Scholar 

  14. H. G. Hertz, M. Holz, G. Keller, H. Versmold, and C. Yoon,Ber. Bunsenges. Phys. Chem. 78, 493 (1974).

    Google Scholar 

  15. H. G. Hertz and M. Holz,J. Phys. Chem. 78, 1002 (1974).

    Google Scholar 

  16. C. A. Lucchesi and D. D. DeFord,Anal. Chem. 29, 1169 (1957).

    Google Scholar 

  17. W. Fresenius and G. Jander,Handbuch der Analytischen Chemie, Vol. IIIa (Springer-Verlag, Berlin, 1971).

    Google Scholar 

  18. C. A. Wamser,J. Am. Chem. Soc. 70, 1209 (1948).

    Google Scholar 

  19. M. Ambar and S. Guttmann,J. Phys. Chem. 64, 1896 (1960).

    Google Scholar 

  20. R. E. Mesmer, K. M. Palen, and C. F. Baes,Inorg. Chem. 12 89 (1973).

    Google Scholar 

  21. V. N. Plakhotnik, V. B. Tulchinskii, and V. V. Varekh,Russ. J. Phys. Chem. 47, 600 (1973).

    Google Scholar 

  22. V. N. Plakhotnik,Russ. J. Inorg. Chem. 20, 1385 (1975).

    Google Scholar 

  23. C. Rädle, Thesis, Karlsruhe, 1972.

  24. H. G. Hertz and C. Rädle,Ber. Bunsenges. Phys. Chem. 77, 521 (1973).

    Google Scholar 

  25. L. Endom, H. G. Hertz, B. Thül, and M. D. Zeidler,Ber. Bunsenges. Phys. Chem. 71, 1008 (1967).

    Google Scholar 

  26. H. G. Hertz,Ber. Bunsenges. Phys. Chem. 71, 979 (1967).

    Google Scholar 

  27. H. G. Hertz and G. Keller, inNuclear Magnetic Resonance in Chemistry, B. Pesce, ed. (Academic Press, New York, 1965).

    Google Scholar 

  28. C. Berger, H. H. Emos, and D. Pohl,Z. Phys. Chem., Leipzig 256, 421 (1975).

    Google Scholar 

  29. P. Kuzay,Z. Phys. Chem., Leipzig 236, 382 (1967).

    Google Scholar 

  30. G. Engel and H. G. Hertz,Ber. Bunsenges. Phys. Chem. 72, 808 (1968).

    Google Scholar 

  31. C. R. Witschonke and C. A. Kraus,J. Am. Chem. Soc. 69, 2472 (1947).

    Google Scholar 

  32. W. E. Thomson and C. A. Kraus,J. Am. Chem. Soc. 69, 1016 (1947).

    Google Scholar 

  33. H. G. Hertz, inMolecular Motions in Liquids, J. Lascombe, ed. (Reidel Publishing Co., Dordrecht, 1974), p. 337.

    Google Scholar 

  34. H. G. Hertz, B. Kwatra, and R. Tutsch,Z. Phys. Chem. (Frankfurt) 103, 259 (1976).

    Google Scholar 

  35. A. L. Capparelli, H. G. Hertz, B. Kwatra, and R. Tutsch,Z. Phys. Chem. (Frankfurt) 103, 279 (1976).

    Google Scholar 

  36. J. C. Rasaiah and H. L. Friedman,J. Chem. Phys. 72, 3352 (1968).

    Google Scholar 

  37. P. S. Ramanathan and H. L. Friedman,J. Chem. Phys. 54, 1086 (1972).

    Google Scholar 

  38. J. C. Rasaiah,J. Chem. Phys. 56, 3071 (1972).

    Google Scholar 

  39. J. C. Rasaiah,J. Solution Chem. 2, 301 (1973).

    Google Scholar 

  40. H. G. Hertz, G. Keller, and H. Versmold,Ber. Bunsenges. Phys. Chem. 73, 549 (1969).

    Google Scholar 

  41. G. J. Templeman and A. L. Van Geet,J. Am. Chem. Soc. 94, 5578 (1972).

    Google Scholar 

  42. M. Eisenstadt and H. L. Friedman,J. Chem. Phys. 44, 1407 (1966).

    Google Scholar 

  43. M. Eisenstadt and H. L. Friedman,J. Chem. Phys. 46, 2182 (1967).

    Google Scholar 

  44. V. I. Chizhik,Zh. Strukt. Khim. 8, 350 (1967) [Engl. transl.J. Struct. Chem. 8, 303 (1967)].

    Google Scholar 

  45. I. Ionov, R. K. Mazitov, and I. I. Evdokimov,Zh. Strukt. Khim. 10, 208 (1969), [Engl. transl.J. Struct. Chem. 10, 197 (1969)].

    Google Scholar 

  46. D. E. Woessner, B. S. Snowden, Jr., and A. G. Ostroff,J. Chem. Phys. 49, 371 (1968).

    Google Scholar 

  47. H. G. Hertz, R. Tutsch, and H. Versmold,Ber. Bunsenges. Phys. Chem. 75, 1177 (1971).

    Google Scholar 

  48. H. G. Hertz,Ber. Bunsenges. Phys. Chem. 80, 950 (1976).

    Google Scholar 

  49. A. Geiger and H. G. Hertz,J. Solution Chem. 5, 365 (1976).

    Google Scholar 

  50. H. Langer and H. G. Hertz,Ber. Bunsenges. Phys. Chem. 81, 478 (1977).

    Google Scholar 

  51. H. G. Hertz,Ber. Bunsenges. Phys. Chem. 71, 999 (1967).

    Google Scholar 

  52. H. G. Hertz,Ber. Bunsenges. Phys. Chem. 77, 531 (1973).

    Google Scholar 

  53. H. G. Hertz, M. Holz, R. Klute, G. Stalidis, and H. Versmold,Ber. Bunsenges. Phys. Chem. 78, 24 (1974).

    Google Scholar 

  54. M. Holz, H. Weingärtner, and H. G. Hertz,J. Chem. Soc. Faraday Trans. 1 73, 71 (1977).

    Google Scholar 

  55. H. Weingärtner and H. G. Hertz,Ber. Bunsenges. Phys. Chem., in press.

  56. K. L. Craighead and R. G. Bryant,Mol. Phys. 29, 1781 (1975).

    Google Scholar 

  57. P. Reimarsson, H. Wennerström, S. Engström, and B. Lindman,J. Phys. Chem. 71, 789 (1977).

    Google Scholar 

  58. G. E. Stungis and J. H. Rugheimer,J. Chem. Phys. 55, 263 (1971).

    Google Scholar 

  59. H. J. C. Yehand and J. L. Ragle,J. Phys. Chem. 72 3688 (1968).

    Google Scholar 

  60. A. Weiss and K. Zohner,Phys. Status Solidi,21, 257 (1967).

    Google Scholar 

  61. R. M. Sternheimer and R. F. Peierls,Phys. Rev. A 3, 837 (1971).

    Google Scholar 

  62. R. E. Watson and A. J. Freeman,Phys. Rev. 131, 250 (1963).

    Google Scholar 

  63. C. A. Melendres and H. G. HertzJ. Chem. Phys. 61, 4156 (1974).

    Google Scholar 

  64. H. G. Hertz,Z. Elektrochem. Ber. Bunsenges. Phys. Chem. 65, 20 (1961).

    Google Scholar 

  65. A. P. Altshuller,J. Am. Chem. Soc. 77, 6187 (1955).

    Google Scholar 

  66. J. W. Akitt,J. Chem. Soc. Faraday Trans. 1 71, 1557 (1975).

    Google Scholar 

  67. C. Deverell and R. E. Richards,Mol. Phys. 10, 551 (1966).

    Google Scholar 

  68. K. Kuhlmann and D. M. Grant,J. Phys. Chem. 68, 3208 (1964).

    Google Scholar 

  69. R. F. Platford,Can. J. Chem. 47, 2271 (1969);49, 709 (1971).

    Google Scholar 

  70. R. A. Robinson and R. H. Stokes,Electrolyte Solutions (Butterworth, London, 1970).

    Google Scholar 

  71. K. A. Hartman, Jr.J. Phys. Chem. 70, 270 (1966).

    Google Scholar 

  72. G. E. Walrafen,J. Chem. Phys. 52, 4176 (1970);55, 768 (1971).

    Google Scholar 

  73. P. Dryjanski and Z. Kęcki,J. Mol. Struct. 12, 219 (1972).

    Google Scholar 

  74. K. Buijs and G. R. Choppin,J. Chem. Phys. 39, 2035 (1963).

    Google Scholar 

  75. Z. Kęcki,Adv. Mol. Relaxation Processes 5, 137 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contreras, M., Hertz, H.G. An analysis of the total ion-solvent encounter configuration of ClO 4 and BF 4 with Na+ and Li+ in water, studied by various nuclear magnetic relaxation times. Part 21 . J Solution Chem 7, 99–136 (1978). https://doi.org/10.1007/BF00648753

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00648753

Key words

Navigation