Advertisement

Astrophysics and Space Science

, Volume 75, Issue 2, pp 289–305 | Cite as

The circular restricted four-body problem

  • M. Michalodimitrakis
Article

Abstract

By generalizing the restricted three-body problem, we introduce the restricted four-body problem. We present a numerical study of this problem which includes a study of equilibrium points, regions of possible motion and periodic orbits. Our main motivation for introducing this problem is that it can be used as an intermediate step for a systematic exploration of the genral four-body problem. In an analogous way, one may introduce the restrictedN-body problem.

Keywords

Periodic Orbit Equilibrium Point Main Motivation Intermediate Step Systematic Exploration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bozis, G.: 1976,Astrophys. Space Sci. 43, 355.Google Scholar
  2. Hadjidemetriou, J. D.: 1977,Celes. Mech. 16, 61.Google Scholar
  3. Hadjidemetriou, J. D. and Michalodimitrakis, M.: 1978, in V. Szebehely (ed.),Dynamics of Planets and Satellites and Theories of Their Motion, D. Reidel Publ. Co., Dordrecht, Holland, p. 263.Google Scholar
  4. Hadjidemetriou, J. D. and Michalodimitrakis, M.: 1980, ‘Families of Periodic Planetary-Type Orbits in theN-body Problem’, (in preparation).Google Scholar
  5. Hénon, M.: 1973,Astron. Astrophys. 28, 415.Google Scholar
  6. Hénon, M.: 1974,Astron. Astrophys. 30, 317.Google Scholar
  7. Marchal, Chr.: 1975,Qualitative Methods and Results in Celestial Mechanics, Edition Provisoire.Google Scholar
  8. Michalodimitrakis, M.: 1978a,Astron. Astrophys. 70, 473.Google Scholar
  9. Michalodimitrakis, M.: 1978b,Astrophys. Space Sci. 58, 125.Google Scholar
  10. Michalodimitrakis, M.: 1978c,Astron. Astrophys. 64, 83.Google Scholar
  11. Michalodimitrakis, M.: 1979a,Astron. Astrophys. 76, 6.Google Scholar
  12. Michalodimitrakis, M.: 1979b,Celes. Mech. 19, 263.Google Scholar
  13. Szebehely, V.: 1967,Theory of Orbits, Academic Press, New York.Google Scholar

Copyright information

© D. Reidel Publishing Co 1981

Authors and Affiliations

  • M. Michalodimitrakis
    • 1
  1. 1.Dept. of Theoretical MechanicsUniversity of ThessalonikiGreece

Personalised recommendations