Advertisement

Journal of Applied Electrochemistry

, Volume 25, Issue 8, pp 764–769 | Cite as

Improved current efficiency equation for the electrodeposition of copper

Papers

Abstract

The current efficiency of copper deposition is controlled by the extent of the competing hydrogen formation reaction which acts on mass transfer of copper ions together with further mass transfer mechanisms. An available current efficiency equation taking account only of the bubble-induced microconvection fails in the case of forced electrolyte flow. The equation is now extended to all other mechanisms. Results are compared with experimental data.

Keywords

Hydrogen Copper Experimental Data Physical Chemistry Mass Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

c

concentration (mol m−3)

C1

constant, Equation 15 (m2 s−1 A−0.5)

d

bubble break-off diameter (m)

D

diffusion coefficient (m2 s−1)

dh

equivalent diameter (m)

F

Faraday constant (F = 96 487 C mol−1)

fG

gas evolution efficiency (−)

g

acceleration due to gravity (m s−2)

j

total current density (A m−2)

j1

partial current density of copper deposition (A m−2)

j2

partial current density of hydrogen formation (A m−2)

k

overall mass transfer coefficient of copper ion, Equation 16 (ms−1)

kb

microconvection mass transfer coefficient (m s−1)

kn

natural convection mass transfer coefficient (m s−1)

kv

microconvection mass transfer coefficient (m s−1)

K1

dimensionless group, Equation 19

K2

dimensionless group, Equation 20

K3

dimensionless group, Equation 26

KM

migration factor (−)

L

characteristic length in natural convection (m)

Lh

channel length (m)

n

charge number (−)

p

pressure (kg m−1 s−2)

R

universal gas constant (R = 8.3143 kg m2 s−2 mol−1 K−1)

T

temperature (K, °C)

v

flow velocity (m s−1)

X

dimensionless parameter, Equation 22

Greek letters

α

expansion coefficient (m3 mol−1)

ε

current efficiency (−)

θ

fractional shielding of the electrode surface (−)

ν

stoichiometric number

νL

kinematic viscosity of liquid (m2 s−1)

Transport numbers

Re

Reynolds number, Equation 11

ReG

Reynolds number of gas evolution, Equation 13

Sc

Schmidt number, Equations 5 and 6

Sh

Sherwood number, Equations 4, 10 and 12

Subscripts

B

dissolved hydrogen

C

copper ion

c

critical

G

gas

liquid bulk

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Vogt,Surf. Technol. 17 (1982) 301.Google Scholar
  2. [2]
    C. Wagner,Adv. Electrochem. Engng. 2 (1962) 1.Google Scholar
  3. [3]
    P. M. Robertson and O. Dossenbach,Oberfläche-Surface 22 (1981) 282.Google Scholar
  4. [4]
    E. Baars and C. Kayser,Z. Elektrochem. 36 (1930) 428.Google Scholar
  5. [5]
    H. Vogt,Electrochim. Acta 38 (1993) 1421.Google Scholar
  6. [6]
    Idem., Electrochim. Acta 38 (1993) 1427.Google Scholar
  7. [7]
    Idem., Ber. Bunsenges. Phys. Chem. 96 (1992) 158.Google Scholar
  8. [8]
    Idem., Electrochim. Acta 29 (1984) 167.Google Scholar
  9. [9]
    Idem., J. Electrochem. Soc. 137 (1990) 1179.Google Scholar
  10. [10]
    H. Hansen,Allg. Wärmetechnik 9 (1959) 75.Google Scholar
  11. [11]
    K. Stephan and H. Vogt,Electrochim. Acta 24 (1979) 11.Google Scholar
  12. [12]
    H. Vogt,ibid. 23 (1978) 203.Google Scholar
  13. [13]
    G. Bendrich, W. Seiler and H. Vogt,Int. J. Heat Mass Transfer 29 (1986) 1741.Google Scholar
  14. [14]
    H. Vogt, Electrochim. Acta32 (1987) 633.Google Scholar
  15. [15]
    G. H. Sedahmed, Y. A. El-Taweel and O. A. Hassan,Surf. Technol. 14 (1981) 109.Google Scholar
  16. [16]
    L. J. J. Janssen,J. Appl. Electrochem. 18 (1988) 339.Google Scholar
  17. [17]
    Idem., private communication (1988).Google Scholar
  18. [18]
    J. Ulsamer,Forsch. Ing.-Wes. 3 (1932) 94.Google Scholar
  19. [19]
    V. Gnielinski,ibid. 44 (1975) 145.Google Scholar
  20. [20]
    F. Nieber, Diss. Techn. Hochschule Köthen (1993).Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • H. Vogt
    • 1
  1. 1.Fachbereich Verfahrens-und UmwelttechnikTechnische Fachhochschule BerlinBerlinGermany

Personalised recommendations