Advertisement

Journal of Applied Electrochemistry

, Volume 25, Issue 8, pp 740–754 | Cite as

Kinetics and mechanism of the oxygen electroreduction reaction on faceted platinum electrodes in trifluoromethanesulfonic acid solutions

  • C. F. Zinola
  • W. E. Triaca
  • A. J. Arvia
Papers

Abstract

The kinetics of the oxygen electroreduction reaction (OERR) were investigated on (1 1 1)-type and (1 0 0)-type faceted, and polycrystalline platinum electrodes in aqueous (0.05–1.0)m trifluoromethanesulfonic acid (TFMSA) using the rotating disc and ring-disc electrode techniques at 25°C. Reaction orders with respect to oxygen close to either 1/2 or 1 were found, depending on the TFMSA concentration and platinum surface morphology. At all TFMSA concentrations the formation of H2O2 was enhanced at (1 0 0)-type platinum surfaces. The difference in the electrocatalytic activity of platinum surfaces can be explained through data derived from the OERR formalism proposed by Damjanovicet al. The rate of the direct O2 to H2O electroreduction reaction increased steadily with the cathodic overvoltage irrespective of the platinum surface morphology, whereas a maximum H2O2 formation rate was found at about 0.5 V, depending on the TFMSA concentration. The H2O2 decomposition rate on (1 0 0)-type platinum electrode yielding H2O approached zero within a certain potential range.

Keywords

Decomposition Rate Platinum Electrode Platinum Surface H2O2 Formation H2O2 Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.J. Appleby and B.S. Baker,J. Electrochem. Soc. 125 (1978) 404.Google Scholar
  2. [2]
    W.E. O'Grady, E.J. Taylor and S. Srinivasan,J. Electroanal. Chem. 132 (1982) 137.Google Scholar
  3. [3]
    E.R. González and S. Srinivasan,Electrochim. Acta 27 (1982) 1425.Google Scholar
  4. [4]
    K-L. Hsueh, E.R. González and S. Srinivasan,ibid. 28 (1983) 691.Google Scholar
  5. [5]
    K-L. Hsueh, E.R. González, D-T. Chin and S. Srinivasan,J. Electrochem. Soc. Extended Abstract of the Meeting of the Electrochemical Society, vol. 106 (1987) p. 233.Google Scholar
  6. [6]
    P.N. Ross and P.C. Andriacos,J. Electroanal. Chem. 154 (1983) 205.Google Scholar
  7. [7]
    E. Yeager, M. Razaq, D. Gervasio, A. Razaq and D. Tryk,J. Serb. Chem. Soc. 57 (1992) 819.Google Scholar
  8. [8]
    R.R. Adzic,in ‘Modern aspects of electrochemistry’, vol. 21, (edited by R.E. White, J. O'M. Bockris and B.E. Conway) Plenum Press, New York and London (1990), chapter 5, pp. 163–235.Google Scholar
  9. [9]
    M. Markovic, R. Adzic, B. Cahan and E. Yeager, Abstract, 41st ISE conference, Montreaux, (1991) 7–138.Google Scholar
  10. [10]
    F. El-Kadiri, R. Faure and R. Durand,J. Electroanal. Chem. 301 (1991).Google Scholar
  11. [11]
    R. Cerviño, W.E. Triaca and A.J. Arvia,J. Electrochem. Soc. 132 (1985) 266.Google Scholar
  12. [12]
    A.J. Arvia, J.C. Canullo, E. Custidiano, C.L. Perdriel and W.E. Triaca,Electrochim. Acta 31 (1986) 1359.Google Scholar
  13. [13]
    W.E. Triaca, T. Kessler, J.C. Canullo and A.J. Arvia,J. Electrochem. Soc. 134 (1987) 1135.Google Scholar
  14. [14]
    C.F. Zinola, A.M. Castro Luna, W.E. Triaca and A.J. Arvia,J. Appl. Electrochem. 24 (1994) 119.Google Scholar
  15. [15]
    L. Vázquez, J.M. Gómez Rodríquez, J. Gómez Herrero, A.M. Baró, N. García, J. C. Canullo and A.J. Arvia,Surf. Sci. 181 (1987) 98.Google Scholar
  16. [16]
    R.M. Cerviño, A.J. Arvia and W.E. Vielstich,ibid. 154 (1985) 623.Google Scholar
  17. [17]
    C.F. Zinola, A.M. Castro Luna, W.E. Triaca and A.J. Arvia,Electrochim. Acta 39 (1994) 1627.Google Scholar
  18. [18]
    H. Angerstein-Kozlowska,in ‘A comprehensive treatise of electrochemistry’ vol. 9, (edited by E.B. Yeager, J.O'M. Bockris, B.E. Conway and S. Sarangapani), Plenum Press, New York and London (1984), chapter 2, p. 15.Google Scholar
  19. [19]
    G. Brauer, ‘Handbuch der präparativen anorganischen chemie’, part I, Verlag, Stuttgart (1960), p. 304.Google Scholar
  20. [20]
    Op.A. Petrii, S. Ya. Vasina and L. Yu. Luk'yanycheva,Elektrokhimiya 17 (1981) 1383.Google Scholar
  21. [21]
    O.A. Petrii and I.G. Khomchenko,ibid. 13 (1977) 570.Google Scholar
  22. [22]
    V. Vesovic, N. Anastasijevic and R.R. Adzic,J. Electroanal. Chem. 218 (1987) 53.Google Scholar
  23. [23]
    A. Damjanovic and V. Brusic,Electrochim Acta 12 (1967) 615.Google Scholar
  24. [24]
    A.J. Appleby,J. Electrochem. Soc. 117 (1970) 641.Google Scholar
  25. [25]
    H. Wroblowa, M.L.B. Rao, A. Damjanovic and J.O'M. Bockris,J. Electroanal. Chem. 15 (1967) 139.Google Scholar
  26. [26]
    M.R. Tarasevich, A. Sadkowski and E.B. Yeager,in ‘A comprehensive treatise of electrochemistry’, vol. 7, (edited by J.O'M. Bockris, E.B. Yeager, S.U.M. Kahn and R.E. White, Plenum Press, New York and London (1983), chapter 6, p. 301.Google Scholar
  27. [27]
    M.R. Tarasevich,Elektrokhimiya 17 (1981) 988.Google Scholar
  28. [28]
    E.B. Yeager,Electrochim. Acta 29 (1984) 1527.Google Scholar
  29. [29]
    A. Damjanovic, M.A. Genshaw and J.O'M. Bockris,J. Chem. Phys. 45 (1964) 4057.Google Scholar
  30. [30]
    S.-M. Park, S. Ho, S. Aruliah, M. Weber, C. Ward, R. Venter and S. Srinivasan,J. Electrochem. Soc. 113 (1986) 1641.Google Scholar
  31. [31]
    J.S. Griffith,Proc. Roy. Soc., A 235 (1956) 23.Google Scholar
  32. [32]
    L. Pauling,Nature 203 (1964) 182.Google Scholar
  33. [33]
    E.B. Yeager, ‘Mechanisms of electrochemical reactions on non-metallic surfaces’,in ‘Electrocatalysis on nonmetallic surfaces’, NBS, Special Publication,455, (1976), pp. 203–219.Google Scholar
  34. [34]
    C.F. Zinola, G.L. Estiú, E.A. Castro and A.J. Arvia,J. Phys. Chem. 98 (1994) 7566.Google Scholar
  35. [35]
    G.A. Benesh and L.S.G. Lingane,Surf. Sci. 261 (1992) 207.Google Scholar
  36. [36]
    B. Hellsing,ibid. 282 (1993) 216.Google Scholar
  37. [37]
    Y. Ohno, T. Matsushima, S. Tanaka, E. Yagasaki and M. Kamada,ibid. 275 (1992) 281.Google Scholar
  38. [38]
    X.C. Guo, J.M. Bradley, A. Hopkins and D.A. King,Surf. Sci. Lett. 292 (1993) L786.Google Scholar
  39. [39]
    F. Savary, J. Weber and G. Calzaferri,J. Phys. Chem. 97 (1993) 3722.Google Scholar
  40. [40]
    M. Brändle and G. Calzaferri,Helv. Chim. Acta 76 (1993) 924.Google Scholar
  41. [41]
    M.E. Gamboa-Aldeco, E. Herrero, P.S. Zelenay and A. Wieckowski,J. Electroanal. Chem. 348 (1993) 451.Google Scholar
  42. [42]
    P.W. Faguy, N. Markovic, R.R. Adzic, C.A. Fierro and E.B. Yeager,ibid. 289 (1990) 245.Google Scholar
  43. [43]
    P.S. Zelenay, M.A. Habib and J.O'M. Bockris,J. Electrochem. Soc. 131 (1984) 2464.Google Scholar
  44. [44]
    P.S. Zelenay, C. Rhee, P. Mrozek and A. Wieckowski, 39th National Symposium of the American Vacuum Society, Chicago, (Nov. 1992), Abst. 365.Google Scholar
  45. [45]
    P.N. Ross, E.J. Cairns, K. Striebel, F. Mc. Larnon and P.C. Andriacos,Electrochim. Acta 32 (1987) 355.Google Scholar
  46. [46]
    G. Calzaferri, L. Forss and I. Kamber,J. Chem. Phys 93 (1989) 5366Google Scholar
  47. [47]
    E. Amouyal, M. Mouallem-Bahout and G. Calzaferri,ibid. 95 (1991) 7641.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • C. F. Zinola
    • 1
  • W. E. Triaca
    • 1
  • A. J. Arvia
    • 1
  1. 1.Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas, (INIFTA)Universidad Nacional de La PlataLa PlataArgentina

Personalised recommendations