Advertisement

Journal of Applied Electrochemistry

, Volume 25, Issue 8, pp 707–715 | Cite as

Effects of electrochemically incorporated bismuth on the discharge and recharge of electrodeposited manganese dioxide films in 9m aqueous KOH

  • C. G. Castledine
  • B. E. Conway
Papers

Abstract

Previous reported work has demonstrated that MnO2 can be made multiple rechargeable over the two-electron capacity by chemical modification through incorporation of a small concentration of Bi(iii) species. In the present work, conditions required for inclusion of bismuth species in electrolytically produced MnO2 deposits on porous graphite are reported together with resulting electrochemical effects of the bismuth species on rechargeability of the electrodeposited MnO2. The optimum conditions for deposition were found to be: temperature 85–90°C; bath composition 0.5 to 2m H2SO4, 0.5m MnSO4, 0.005 to 0.01m Bi3+ and current density 5 to 20 mA cm−2 (apparent). The mechanism proposed for the inclusion of bismuth species is by continuous precipitation caused by high local acidity generated at the electrode by the reaction of anodic deposition of MnO2. With respect to the mechanism of reduction and reoxidation of MnO2 in 9m KOH with bismuth species present, a previously suggested role of soluble intermediates is confirmed. It is proposed that bismuth may aid in the nucleation and growth process associated with formation of Mn(OH)2 or MnO2 from a soluble Mn(iii) intermediate. Such a process must take place in order for completion of either discharge or recharge to take place at the electrode. It seems that the role of the included Bi species is to promote a discharge and recharge mechanism of the so-called ‘heterogeneous’ kind involving a soluble Mn(iii) intermediate over an alternative, solid-state, ‘homogeneous’ pathway.

Keywords

Manganese Bismuth MnO2 MnSO4 Manganese Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. F. Yao, N. Gupta, H. S. Wroblowa,J. Electroanal. Chem. 223 (1987) 107.Google Scholar
  2. [2]
    H. S. Wroblowa and N. Gupta,238 (1987) 98.Google Scholar
  3. [3]
    M. A. Dzieciuch, N. Gupta and H. S. Wroblowa,J. Electrochem. Soc. 135 (1988) 2415.Google Scholar
  4. [4]
    H. S. Wroblowa, N. Gupta and Y. F. Yao,Battery Materials Symposium, Graz2 (1985) 203.Google Scholar
  5. [5]
    M. A. Dzieciuch, H. S. Wroblowa and J. T. Kummer,US Patent 4 451 543 (1984).Google Scholar
  6. [6]
    Y. Y. Yao,US Patent 4 520 005 (1985).Google Scholar
  7. [7]
    K. Kordesch, J. Gsellmann, M. Peri, K. Tomantschger and R. Chemelli,Electrochim. Acta 26 (1981) 1495.Google Scholar
  8. [8]
    A. Kozawa and J. F. Yeager,J. Electrochem. Soc. 112 (1965) 959.Google Scholar
  9. [9]
    A. Kozawa and R. A. Powers,ibid. 113 (1966), 870.Google Scholar
  10. [10]
    Idem, Electrochem. Tech. 5 (1967) 535.Google Scholar
  11. [11]
    Idem, ibid. 115 (1968) 122.Google Scholar
  12. [12]
    Idem, ibid. 115 (1968) 1003.Google Scholar
  13. [13]
    Idem, J. Chem. Educ. 49 (1972) 587.Google Scholar
  14. [14]
    N. C. Cahoon and M. P. Korver,J. Electrochem. Soc. 100 (1959) 745.Google Scholar
  15. [15]
    G. S. Bell and R. Huber,ibid. 111 (1964) 1.Google Scholar
  16. [16]
    P. Ruetschi,ibid. 123 (1976) 495.Google Scholar
  17. [17]
    A. Era, Z. Takehara and S. Yoshizawa,Electrochim. Acta 13 (1968) 207.Google Scholar
  18. [18]
    W. C. Vosburgh and Pao-soong Lou,J. Electrochem. Soc. 108 (1961) 485.Google Scholar
  19. [19]
    D. Boden, C. J. Venuto, D. Wisler and R. B. Wylie,ibid. 114 (1967) 415.Google Scholar
  20. [20]
    K. J. Vetter,Z. Elektrochem. 66 (1962) 577.Google Scholar
  21. [21]
    K. J. Vetter,J. Electrochem. Soc. 110 (1963) 597.Google Scholar
  22. [22]
    D. Y. Qu, B. E. Conway, L. Bai, Y. H. Zhou and W. A. Adams,ibid. 140 (1993) 884; see also.J. Electroanal. Chem. 365 (1994) 247.Google Scholar
  23. [23]
    G. D. van Arsdale and C. G. Maier,Trans. Electrochem. Soc. 33 (1918) 109.Google Scholar
  24. [24]
    G. W. Nichols,ibid. 62 (1932) 393.Google Scholar
  25. [25]
    O. W. Storey, E. Steinhoff and E. R. Hoff,ibid. 86 (1944) 337.Google Scholar
  26. [26]
    F. B. Allan,Am. Chem. J. 27 (1902) 284.Google Scholar
  27. [27]
    S. Skramovsky and O. Vondrasek,Coll. Czech. Chem. Commun. 9 (1937) 329.Google Scholar
  28. [28]
    A. Kozawa, T. Kalnok-kis and J. F. Yeager,J. Electrochem. Soc. 113 (1966) 405.Google Scholar
  29. [29]
    K. A. K. Lott and M. C. R. Symons,J. Chem. Soc., Lond. (1959) 829.Google Scholar
  30. [30]
    E. Preisler,Battery Material Symposium, Graz2 (1985) 247.Google Scholar
  31. [31]
    L. Bai, L. Gao and B. E. Conway,J. Chem. Soc., Faraday Trans. 89 (1993) 235.Google Scholar
  32. [32]
    L. Bai, L. Gao and B. E. Conway, [31], part 2J. Chem. Soc., Faraday Trans. 89 (1993) 243.Google Scholar
  33. [33]
    J. McBreen,Power Sources 5 (1975) 525.Google Scholar
  34. [34]
    A. J. Bard, R. Parsons and J. Jordan (Eds), Standard potentials in aqueous solution, Marcel Dekker, New York (1985), IUPAC publication.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • C. G. Castledine
    • 1
  • B. E. Conway
    • 1
  1. 1.Chemistry DepartmentUniversity of OttawaOttawaCanada

Personalised recommendations