Skip to main content
Log in

Birth of the presolar nebula: The sequence of condensation revealed in the Allende meteorite

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This work applies the well-known supernova-trigger hypothesis for solar system formation to explain in detail many properties of the Allende meteorite. The Allende carbonaceous chondrite meteorite is an assemblage of millimetre- to centimetre-sized Ca-Al-rich inclusions (CAI's), fine-grained alkali-rich spinel aggregates, amoeboid olivine aggregates, olivine chondrules and sulfide chondrules set in an extremely fine-grained black matrix. Detailed isotopic, chemical and textural properties show that these components formed in the above order as independent cosmic grains. Some CAI's containmicron-sized metal nuggets in which the normally incompatible refractory (Mo, Re, W) and platinum group (Pt, Os, Ir, Ru) metals are alloyed together in approximately ‘cosmic’ proportions, suggesting that these nuggets also condensed as cosmic grains.

From the consistent pattern of enclosure of earlier components on the above list within later ones, it appears that in the environment where these materials formed, condensation moved inexorably in the direction of increasing olivine and decreasing refractory element and16O content (from ∼4% excess16O to ∼‘normal’ terrestrial oxygen isotopic composition). Condensation sequences are all short and incomplete, from which it is concluded that condensing materials were soon separated from the condensing environment and isolated until all were brought together in a final ‘snowstorm’ of fine-grained, olivine crystals constituting the meteorite matrix.

These major properties can be accounted for in a model in which a supernova remnant (SNR) in the ‘snowplow’ phase, whose oxygen was initially pure16O, pushes into a dark interstellar cloud. In the model, condensation of CAI's begins in the SNR shell when it has been diluted with ∼2500 times its mass of matter from the cloud, which also in part explains the rarity of observed isotopic anomalies in CAI's. The retardation of the SNR by the cloud propels condensed grains ahead toward the cloud under their own momentum. Continuing dilution by the cloud and continuing removal of the most refractory elements in grains can explain the evolving patterns of fractionation and depletion of refractory elements, including REE's, in successive condensates. Features such as rims on CAI's and concentric zonation of fine-grained aggregates can also be satisfied in the model. A presolar origin and a short (∼ 10 000 years) formation time for inclusions in carbonaceous chondrites are major implications of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H. and Arrhenius, G.: 1976,Evolution of the Solar System, NASA Special Publication 345, Washington.

  • Allen, J. M., Grossman, L., Davis, A. M. and Hutcheon, I. D.: 1978,Proc. 9th Lunar Planet. Sci. Conf. (in press).

  • Arrhenius, G. A. and McCrumb, J. L.: 1978,Thermodynamics and Kinetics of Dust Formation in the Space Medium, Contrib. 330, Lunar Planet. Inst.

  • Arrhenius, G. and Raub, C.: 1978,J. Less Common Metals (in press).

  • Blander, M. and Fuchs, L. H.: 1975,Geochim. Cosmochim. Acta 39, 1605.

    Google Scholar 

  • Boynton, W. V.: 1975,Geochim. Cosmochim. Acta 39, 569.

    Google Scholar 

  • Brownlee, D. E.: 1979,Proc. Conf. Protostars and Planets, Tucson, Arizona.

  • Brownlee, D. E., Tomandl, D. A. and Olszewski, E.: 1977,Proc. 8th Lunar Sci. Conf., p. 149.

  • Cameron, A. G. W. and Truran, J. W.: 1977,Icarus 30, 447.

    Google Scholar 

  • Chevalier, R. A.: 1978,Am. Scientist 66, 712.

    Google Scholar 

  • Churchwell, E., Walmsley, C. and Winnewisser, G.: 1977,Astron. Astrophys. 54, 952.

    Google Scholar 

  • Clarke, R. S., Jarosewich, E., Mason, B., Nelen, J., Gomez, M. and Hyde, J. P.: 1970,Smithson. Contrib. Earth Sci. 5, 53 pp.

    Google Scholar 

  • Clayton, D. D.: 1978,Thermodynamics and Kinetics of Dust Formation in the Space Medium, Contrib. 330, Lunar Planet. Inst.

  • Clayton, D. D., Dwek, E. and Woosley, S. E.: 1977,Astrophys. J. 214, 300.

    Google Scholar 

  • Clayton, R. N. and Mayeda, T. K.: 1977,Geophys. Res. Letters 4, 295.

    Google Scholar 

  • Clayton, R. N., Onuma, N., Grossman, L. and Mayeda, T. K.: 1977,Earth Planet. Sci. Letters 34, 209.

    Google Scholar 

  • Clayton, R. N., Mayeda, T. K. and Epstein, S.: 1978,Lunar Planet. Sci. IX, 186.

    Google Scholar 

  • Davis, A. M. and Grossman, L.: 1979,Geochim. Cosmochim. Acta (in press).

  • Delsemme, A. H.: 1977, in A. H. Delsemme (ed.),Comets, Asteroids, Meteorites — Inter-relations, Evolution and Origins, Toledo, Ohio, p. 3.

    Google Scholar 

  • Draine, B. T.: 1979,Astrophys. Space Sci. 65, 313.

    Google Scholar 

  • El Goresy, A., Nagel, K. and Ramdohr, P.: 1978,Proc. 9th Lunar Planet. Sci. Conf. (in press).

  • Esat, T., Lee, T., Papanastassiou, D. A. and Wasserburg, G. J.: 1978,Geophys. Res. Letters 5, 807.

    Google Scholar 

  • Fuchs, L. H. and Blander, M.: 1977,Geochim. Cosmochim. Acta 41, 1170.

    Google Scholar 

  • Godfrey, P., Brown, R., Gunn, H., Blackman, G. and Storey, J.: 1977,Monthly Notices Roy. Astron. Soc. 180, 83.

    Google Scholar 

  • Gray, C. M. and Compston, W.: 1974,Nature 251, 495.

    Google Scholar 

  • Gray, C. M., Papanastassiou, D. A. and Wasserburg, G. J.: 1973,Icarus 20, 213.

    Google Scholar 

  • Green, H. W., Radcliffe, S. V. and Heuer, A. H.: 1971,Science 172, 936.

    Google Scholar 

  • Grossman, L.: 1975,Geochim. Cosmochim. Acta 36, 597.

    Google Scholar 

  • Grossman, L.: 1975,Geochim. Cosmochim. Acta 39, 433.

    Google Scholar 

  • Grossman, L. and Ganapathy, R.: 1976,Geochim. Cosmochim. Acta 40, 967.

    Google Scholar 

  • Grossman, L. and Steele, I. M.: 1976,Geochim. Cosmochim. Acta 40, 149.

    Google Scholar 

  • Grossman, L., Ganapathy, R. and Davis, A. M.: 1977,Geochim. Cosmochim. Acta 41, 1647.

    Google Scholar 

  • Grossman, L., Ganapathy, R., Methot, R. L. and Davis, A. M.: 1979,Geochim. Cosmochim. Acta (in press).

  • Kelly, W. R. and Wasserburg, G. J.: 1978,Geophys. Res. Lett. 5, 1079.

    Google Scholar 

  • Larimer, J. W.: 1978,Thermodynamics and Kinetics of Dust Formation in the Space Medium, Contrib. 330, Lunar Planet. Inst.

  • Larimer, J. W. and Anders, E.: 1970,Geochim. Cosmochim. Acta 34, 367.

    Google Scholar 

  • Lee, T., Papanastassiou, D. A. and Wasserburg, G. J.: 1975,Bull. Am. Phys. Soc. 20, 1486.

    Google Scholar 

  • Lee, T., Papanastassiou, D. A. and Wasserburg, G. J.: 1977,Astrophys. J. Letters 211, L107.

    Google Scholar 

  • Margolis, S. H. and Falk, S. W.: 1978,Thermodynamics and Kinetics of Dust Formation in the Space Medium, Contrib. 330, Lunar Planet. Inst.

  • Martin, P. M. and Mason, B.: 1974,Nature 249, 333.

    Google Scholar 

  • McSween, H. Y.: 1977,Geochim. Cosmochim. Acta 41, 1777.

    Google Scholar 

  • Nagasawa, H., Blanchard, D. P., Jacobs, J. W., Brannon, J. C., Philpotts, J. A. and Onuma, N.: 1977,Geochim. Cosmochim. Acta 41, 1587.

    Google Scholar 

  • Palme, H. and Wlotzka, F.: 1976,Earth Planet. Sci. Letters 33, 45.

    Google Scholar 

  • Papanastassiou, D. A., Huneke, J. C., Esat, T. M. and Wasserburg, G. J.: 1978,Lunar Planet. Sci. IX, 859.

    Google Scholar 

  • Shull, J. M. and McKee, C. F.: 1979,Astrophys. J. 227, 131.

    Google Scholar 

  • Snetsinger, K.: 1973,Am. Min. 58, 189.

    Google Scholar 

  • van Schmus, W. R. and Wood, J. A.: 1967,Geochim. Cosmochim. Acta 31, 737.

    Google Scholar 

  • Wark, D. A.: 1978a,Lunar Planet. Sci. IX, 1208.

    Google Scholar 

  • Wark, D. A.: 1978b,Thermodynamics and Kinetics of Dust Formation in the Space Medium, Contrib. 330, Lunar Planet. Inst.

  • Wark, D. A. and Lovering, J. F.: 1976,Lunar Science VII, 912.

    Google Scholar 

  • Wark, D. A. and Lovering, J. F.: 1977,Proc. 8th Lunar Sci. Conf. 95.

  • Wark, D. A. and Lovering, J. F.: 1978, Lunar Planet. Sci.IX, 1214.

    Google Scholar 

  • Wark, D. A., Wasserburg, G. J. and Lovering, J. F.: 1979, Lunar Planet. Sci.X in press.

  • Wasserburg, G. J., Lee, T. and Papanastassiou, D. A.: 1977,Geophys. Res. Letters 4, 299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Invited contribution to the Proceedings of a Workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wark, D.A. Birth of the presolar nebula: The sequence of condensation revealed in the Allende meteorite. Astrophys Space Sci 65, 275–295 (1979). https://doi.org/10.1007/BF00648496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00648496

Keywords

Navigation