Journal of Solution Chemistry

, Volume 1, Issue 1, pp 39–43 | Cite as

Transference numbers of potassium picrate in water at 25°C and the dimerization of picrate ions

  • P. G. N. Moseley
  • M. Spiro
Article

Abstract

The cation- and anion-constituent transference numbers of aqueous 0.02M potassium picrate have been measured at 25°C by the moving-boundary method. The large difference (0.014) between the results and the predictions of the Debye-Hückel-Onsager theory, and similar anomalies in the literature, are consistent with the existence of picrate ion dimers (Pi 2 2− ) with a formation constant of 4(±2) liter-mole−1.

Key Words

Transference number moving boundary potassium picrate dimerization aqueous 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. G. Ives and P. G. N. Moseley,J. Chem. Soc. B, 757 (1966).Google Scholar
  2. 2.
    M. Shamim and M. Spiro,Trans. Faraday Soc. 66, 2863 (1970).Google Scholar
  3. 3.
    H. H. Broene and T. De Vries,J. Am. Chem. Soc. 69, 1644 (1947).Google Scholar
  4. 4.
    A. D. Pethybridge and J. E. Prue,Trans. Faraday Soc. 63, 2019 (1967).Google Scholar
  5. 5.
    M. Selvaratnam and M. Spiro,Trans. Faraday Soc. 61, 360 (1965).Google Scholar
  6. 6.
    J. Lange and E. Herre,Z. Physik. Chem. A 181, 329 (1938).Google Scholar
  7. 7.
    A. Seidell and W. F. Linke,Solubilities of Inorganic and Metal-Organic Compounds (A. C. S., Washington, D. C., 1965), 4th ed., Vol. II, p. 53.Google Scholar
  8. 8.
    M. Spiro, “Transference Numbers”, inPhysical Methods of Chemistry, Part II A: Electrochemical Methods, A. Weissberger and B. W. Rossiter, eds., (Interscience Publishers, New York, 1971), Chap. 4.Google Scholar
  9. 9.
    J. M. Notley and M. Spiro,J. Phys. Chem. 70, 1502 (1966).Google Scholar
  10. 10.
    L. G. Longsworth,J. Am. Chem. Soc. 54, 2741 (1932).Google Scholar
  11. 11.
    M. Ohag and P. G. N. Moseley, unpublished work.Google Scholar
  12. 12.
    Calculated from the data listed by F. J. Millero,Chem. Rev. 71, 147 (1971).Google Scholar
  13. 13.
    A. I. Vogel,A Textbook of Quantitative Inorganic Analysis (Longmans, London, 1961), 3rd ed., p. 444.Google Scholar
  14. 14.
    W. Jaekel,Z. Physik. Chem. (Leipzig),207, 296 (1957).Google Scholar
  15. 15.
    R. A. Robinson and R. H. Stokes,Electrolyte Solutions (Butterworths, London, 1965), 2nd ed. revised, (a) Appendix 6.1, (b) Appendix 7.1, (c) p. 144.Google Scholar
  16. 16.
    G. Kortüm and A. Weller,Z. Naturforsch. 5a, 451 (1950).Google Scholar
  17. 17.
    H. M. Daggett, Jr., E. J. Bair, and C. A. Kraus,J. Am. Chem. Soc. 73, 799 (1951); M. J. McDowell and C. A. Kraus,J. Am. Chem. Soc. 73, 2170 (1951).Google Scholar
  18. 18.
    G. Kortüm and H. Wilski,Z. Physik. Chem. (Frankfurt),2, 256 (1954).Google Scholar
  19. 19.
    R. H. Stokes,J. Am. Chem. Soc. 76, 1988 (1954).Google Scholar
  20. 20.
    R. L. Kay and J. L. Dye,Proc. Nat. Acad. Sci. U.S. 49, 5 (1963).Google Scholar
  21. 21.
    G. Kortüm and A. Weller,Z. Naturforsch. 5a, 590 (1950).Google Scholar

Copyright information

© Plenum Publishing Corporation 1972

Authors and Affiliations

  • P. G. N. Moseley
    • 1
  • M. Spiro
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of KhartoumKhartoumSudan
  2. 2.Department of ChemistryImperial College of Science and TechnologyLondonEngland

Personalised recommendations