Skip to main content
Log in

Thermodynamics of caffeine in aqueous denaturant solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The effects of urea, guanidinium chloride, and potassium chloride on the solution properties of caffeine have been investigated by solubility and partition experiments and by measuring heats of dilution, solution, and mixing. Thermodynamic transfer properties are used to discuss the possible mechanism of action of the two denaturants. The ability of caffeine to form stacked aggregates is taken as possible evidence for a direct interaction of this solute with urea and guanidinium ion. The data are discussed both in terms of an ideally associating system and in terms of the virial expansion following the McMillan-Mayer solution theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Gill, M. Downing, and G. F. Sheats,Biochemistry 6, 272 (1967).

    Google Scholar 

  2. J. H. Stern and L. R. Beeninga,J. Phys. Chem. 79, 582 (1975).

    Google Scholar 

  3. A. Cesàro, E. Russo, and V. Crescenzi,J. Phys. Chem. 80, 335 (1976).

    Google Scholar 

  4. R. B. Cassel and R. H. Wood,J. Phys. Chem. 78, 2465 (1974); J. J. Savage and R. H. Wood,J. Solution Chem. 5, 733 (1976) and references therein.

    Google Scholar 

  5. H. L. Friedman and C. V. Krishnan,J. Solution Chem. 2, 119 (1973).

    Google Scholar 

  6. P. O. P. Ts'o and S. I. Chan,J. Am. Chem. Soc. 86, 4176 (1964).

    Google Scholar 

  7. A. Cesàro,J. Solution Chem. 5, 319 (1976).

    Google Scholar 

  8. H. L. Friedman,J. Solution Chem. 1, 387 (1972).

    Google Scholar 

  9. T. T. Herskovits and J. J. Bowen,Biochemistry 13, 5474 (1974).

    Google Scholar 

  10. F. A. Long and W. F. McDevit,Chem. Rev. 51, 119 (1952).

    Google Scholar 

  11. J. A. Schellman,C. R. Trav. Lab. Carlsberg, Ser. Chim. 29, 223 (1956).

    Google Scholar 

  12. S. J. Gill and E. L. Farguhar,J. Am. Chem. Soc. 90, 3039 (1968).

    Google Scholar 

  13. A. Cesàro and G. Starec,J. Phys. Chem. (1980), in press.

  14. Y. Nozaki,Methods in Enzymology, Vol. 26, C. H. W. Hirs and S. N. Timasheff eds. (Academic Press, New York, 1972), pp. 43–50.

    Google Scholar 

  15. A. Cesàro and E. Russo,J. Chem. Educ. 55, 133 (1978).

    Google Scholar 

  16. C. Tanford,Adv. Protein Chem. 24, 1 (1970).

    Google Scholar 

  17. A. Cesàro, V. Crescenzi, and E. Russo, IV Conference Internationale de Termodynanique Chimique (IUPAC), Montpellier (1975).

  18. W. G. McMillan and J. E. Mayer,J. Chem. Phys. 13, 276 (1945).

    Google Scholar 

  19. T. L. Hill and Y. D. Chen,Biopolymers 12, 1285 (1973).

    Google Scholar 

  20. R. L. Scruggs, E. K. Achter, and P. D. Ross,Biopolymers 11, 1961 (1972).

    Google Scholar 

  21. J. Alvarez and R. Biltonen,Biopolymers 12, 1815 (1973).

    Google Scholar 

  22. W. Kauzmann,Adv. Protein Chem. 14, 1 (1959).

    Google Scholar 

  23. V. Crescenzi, A. Cesàro, and E. Russo,Int. J. Pept. Protein Res. 5, 427 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cesàro, A., Russo, E. & Tessarotto, D. Thermodynamics of caffeine in aqueous denaturant solutions. J Solution Chem 9, 221–235 (1980). https://doi.org/10.1007/BF00648328

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00648328

Key words

Navigation