Advertisement

Journal of Solution Chemistry

, Volume 9, Issue 3, pp 221–235 | Cite as

Thermodynamics of caffeine in aqueous denaturant solutions

  • Attilio Cesàro
  • Elio Russo
  • Dario Tessarotto
Article

Abstract

The effects of urea, guanidinium chloride, and potassium chloride on the solution properties of caffeine have been investigated by solubility and partition experiments and by measuring heats of dilution, solution, and mixing. Thermodynamic transfer properties are used to discuss the possible mechanism of action of the two denaturants. The ability of caffeine to form stacked aggregates is taken as possible evidence for a direct interaction of this solute with urea and guanidinium ion. The data are discussed both in terms of an ideally associating system and in terms of the virial expansion following the McMillan-Mayer solution theory.

Key words

Aqueous solutions caffeine transfer properties urea guanidinium chloride potassium chloride solubility heats of dilution solution and mixing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Gill, M. Downing, and G. F. Sheats,Biochemistry 6, 272 (1967).Google Scholar
  2. 2.
    J. H. Stern and L. R. Beeninga,J. Phys. Chem. 79, 582 (1975).Google Scholar
  3. 3.
    A. Cesàro, E. Russo, and V. Crescenzi,J. Phys. Chem. 80, 335 (1976).Google Scholar
  4. 4.
    R. B. Cassel and R. H. Wood,J. Phys. Chem. 78, 2465 (1974); J. J. Savage and R. H. Wood,J. Solution Chem. 5, 733 (1976) and references therein.Google Scholar
  5. 5.
    H. L. Friedman and C. V. Krishnan,J. Solution Chem. 2, 119 (1973).Google Scholar
  6. 6.
    P. O. P. Ts'o and S. I. Chan,J. Am. Chem. Soc. 86, 4176 (1964).Google Scholar
  7. 7.
    A. Cesàro,J. Solution Chem. 5, 319 (1976).Google Scholar
  8. 8.
    H. L. Friedman,J. Solution Chem. 1, 387 (1972).Google Scholar
  9. 9.
    T. T. Herskovits and J. J. Bowen,Biochemistry 13, 5474 (1974).Google Scholar
  10. 10.
    F. A. Long and W. F. McDevit,Chem. Rev. 51, 119 (1952).Google Scholar
  11. 11.
    J. A. Schellman,C. R. Trav. Lab. Carlsberg, Ser. Chim. 29, 223 (1956).Google Scholar
  12. 12.
    S. J. Gill and E. L. Farguhar,J. Am. Chem. Soc. 90, 3039 (1968).Google Scholar
  13. 13.
    A. Cesàro and G. Starec,J. Phys. Chem. (1980), in press.Google Scholar
  14. 14.
    Y. Nozaki,Methods in Enzymology, Vol. 26, C. H. W. Hirs and S. N. Timasheff eds. (Academic Press, New York, 1972), pp. 43–50.Google Scholar
  15. 15.
    A. Cesàro and E. Russo,J. Chem. Educ. 55, 133 (1978).Google Scholar
  16. 16.
    C. Tanford,Adv. Protein Chem. 24, 1 (1970).Google Scholar
  17. 17.
    A. Cesàro, V. Crescenzi, and E. Russo, IV Conference Internationale de Termodynanique Chimique (IUPAC), Montpellier (1975).Google Scholar
  18. 18.
    W. G. McMillan and J. E. Mayer,J. Chem. Phys. 13, 276 (1945).Google Scholar
  19. 19.
    T. L. Hill and Y. D. Chen,Biopolymers 12, 1285 (1973).Google Scholar
  20. 20.
    R. L. Scruggs, E. K. Achter, and P. D. Ross,Biopolymers 11, 1961 (1972).Google Scholar
  21. 21.
    J. Alvarez and R. Biltonen,Biopolymers 12, 1815 (1973).Google Scholar
  22. 22.
    W. Kauzmann,Adv. Protein Chem. 14, 1 (1959).Google Scholar
  23. 23.
    V. Crescenzi, A. Cesàro, and E. Russo,Int. J. Pept. Protein Res. 5, 427 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Attilio Cesàro
    • 1
  • Elio Russo
    • 1
  • Dario Tessarotto
    • 1
  1. 1.Laboratorio di Chimica delle Macromolecole, Istituto di ChimicaUniversità di TriesteTriesteItaly

Personalised recommendations