Astrophysics and Space Science

, Volume 30, Issue 2, pp 327–342 | Cite as

OnH-functions of radiative transfer

  • S. R. Das Gupta


Chandrasekhar'sH-functionH(z) corresponding to the dispersion functionT(z)=|δ rs frs(z)|, where [f rs (z)] is of rank 1, is obtained in terms of a Cauchy integral whose density functionQ(x,ω1,ω2,...) can be approximated by approximating polynomials (uniformly converging toQ(x)) having their coefficients expressed as known functions of the parametersω r 's. A closed form approximation ofH(z) to a sufficiently high degree of accuracy is then readily available by term by term integration.


Closed Form Radiative Transfer Term Integration Form Approximation Closed Form Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Busbridge, I. W.: 1960,The Mathematics of Radiative Transfer, Cambridge Tracts on Mathematics and Math. Physics, No. 50, Chapter 2.Google Scholar
  2. Busbridge, I. W.: 1962,Trans. Am. Math. Soc. 105, 112.Google Scholar
  3. Busbridge, I. W. and Stibbs, D. W. N.: 1954,Monthly Notices Roy. Astron. Soc. 114, 2.Google Scholar
  4. Chandrasekhar, S.: 1950,Radiative Transfer, Clarendon Press, Oxford.Google Scholar
  5. Crum, M. M.: 1947,Quart. J. Math. (Oxford) 18, 244.Google Scholar
  6. Das Gupta, S. R.: 1956,Sci. Culture 22, 177.Google Scholar
  7. Das Gupta, S. R.: 1957,Indian J. Theor. Phys. 5, 39.Google Scholar
  8. Das Gupta, S. R.: 1958a,Indian J. Theor. Phys. 6, 39, 77.Google Scholar
  9. Das Gupta, S. R.: 1958b,Sci. Culture 23, 370.Google Scholar
  10. Das Gupta, S. R. and Karanjai, S.: 1972,Astrophys. Space Sci. 18, 246.Google Scholar
  11. Fox, Ch.: 1961,Trans. Am. Math. Soc. 99, 285.Google Scholar
  12. Hopf, E.: 1934,Mathematical Problems of Radiative Equilibrium, Cambridge Tracts in Mathematics and Math. Physics, No. 31.Google Scholar
  13. Kourganoff, V.: 1952,Basic Methods in Transfer Problems, Clarendon Press, Oxford, p. 174.Google Scholar
  14. Muskhelishvili, N. I.: 1946,Singular Integral Equations, English translation (1953), P. Noordhoff, Ltd. Groningen, Holland, Chapters 1 and 2.Google Scholar
  15. Savedoff, M.: 1952,Astrophys. J. 115, 509.Google Scholar
  16. Stibbs, D. W. N. and Wier, R. E.: 1959,Monthly Notices Roy. Astron. Soc. 119, 512.Google Scholar
  17. Woolley, R. v. d. R. and Stibbs, D. W. N.: 1953,The Outer Layers of a Star, Clarendon Press, Oxford, Chapter 8.Google Scholar

Copyright information

© D. Reidel Publishing Company 1974

Authors and Affiliations

  • S. R. Das Gupta
    • 1
  1. 1.Dept. of MathematicsUniversity of North BengalDarjeelingIndia

Personalised recommendations