Advertisement

Astrophysics and Space Science

, Volume 180, Issue 2, pp 253–271 | Cite as

Rotational perturbations of magneto-viscous fluid universes coupled with zero-mass scalar field

  • Koijam Maniharsingh
Article

Abstract

The dynamics of slowly rotating magneto-viscous fluid universe coupled with zero-mass scalar field is investigated, and the rotational perturbations of such models are studied in order to substantiate the possibility that the Universe is endowed with slow rotation, in the course of presentation of several new analytic solutions. Four different cases are taken up in which the nature and role of the metric rotation Ω(r, t) as well as that of the matter rotationω(r,t) are discussed. Except for the case of ‘perfect drag’, the scalar field is found to have a damping effect on the rotational motion. This damping effect is seen to be roughly analogous to the viscosity. The periods of physical validity of some of the models are also found out. Most of the rotating models obtained here come out to be expanding ones as well which may be taken as good examples of real astrophysical situations.

Keywords

Viscosity Scalar Field Rotational Motion Slow Rotation Physical Validity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. C., Adler, R. J., Cohen, J. M., and Sheffield, C.: 1974,Astrophys. J. 192, 525.Google Scholar
  2. Adams, R. C., Cohen, J. M., Adler, R. J., and Sheffield, C.: 1973,Phys. Rev. D8, 1651.Google Scholar
  3. Bayin, S. S.: 1981,Phys. Rev. D24, 2056.Google Scholar
  4. Bayin, S. S.: 1983,Phys. Rev. D27, 3030.Google Scholar
  5. Bayin, S. S.: 1985a,Phys. Rev. D32, 2241.Google Scholar
  6. Bayin, S. S.: 1985b,Can. J. Phys. 63, 1320.Google Scholar
  7. Bayin, S. S. and Cooperstock, F. I.: 1980,Phys. Rev. D22, 2317.Google Scholar
  8. Bietenholz, M. F. and Kronberg, P. P.: 1984,Astrophys. J. 287, L1.Google Scholar
  9. Birch, P.: 1982,Nature 298, 451.Google Scholar
  10. Chandrasekhar, S. and Friedman, J. L.: 1972a,Astrophys. J. 175, 379.Google Scholar
  11. Chandrasekhar, S. and Friedman, J. L.: 1972b,Astrophys. J. 176, 745.Google Scholar
  12. Chandrasekhar, S. and Friedman, J. L.: 1972c,Astrophys. J. 177, 745.Google Scholar
  13. Chandrasekhar, S. and Friedman, J. L.: 1973,Astrophys. J. 181, 481.Google Scholar
  14. Cohen, J. M. and Brill, D. R.: 1968,Nuovo Cimento B56, 209.Google Scholar
  15. Das, A., Florides, P. S., and Synge, J. L.: 1961,Proc. Roy. Soc. London A263, 451.Google Scholar
  16. Ellis, G. F. R.: 1967,J. Math. Phys. 8, 1171.Google Scholar
  17. Florides, P. S. and Synge, J. L.: 1962,Proc. Roy. Soc. London A270, 467.Google Scholar
  18. Florides, P. S. and Synge, J. L.: 1964,Proc. Roy. Soc. London A280, 459.Google Scholar
  19. Hartle, J. B. and Sharp, D. H.: 1965,Phys. Rev. Letters 15, 909.Google Scholar
  20. Hartle, J. B. and Sharp, D. H.: 1967,Astrophys. J. 147, 317.Google Scholar
  21. Hawking, S.: 1969,Monthly Notices Roy. Astron. Soc. 142, 129.Google Scholar
  22. Islam, J. N.: 1985,Rotating Fields in General Relativity, Cambridge University Press, Cambridge.Google Scholar
  23. Kaminisi, K., Arai, K., and Tukamoto, M.: 1977,Phys. Rep. Kumamoto Univ. 3(1), 33.Google Scholar
  24. Krori, K. D., Sarmah, J. C., and Goswami, D.: 1983,Can. J. Phys. 61, 744.Google Scholar
  25. Lense, J. and Thirring, H.: 1918,Phys. Z. 19, 156.Google Scholar
  26. Lichnerowicz, A.: 1967,Relativistic Hydrodynamics and Magnetohydrodynamics, W. A. Benjamin, Inc., New York.Google Scholar
  27. Maitra, S. C.: 1966,J. Math. Phys. 7, 1025.Google Scholar
  28. Maniharsingh, K.: 1987,Astrophys. Space Sci. 139, 183.Google Scholar
  29. Maniharsingh, K.: 1988,Astrophys. Space Sci. 148, 149.Google Scholar
  30. Maniharsingh, K.: 1989,Astrophys. Space Sci. 161, 111.Google Scholar
  31. Maniharsingh, K. and Bhamra, K. S.: 1986,Pramana-J. Phys. 26, 117.Google Scholar
  32. Pecci, R. D. and Quinn, H.: 1979,Phys. Rev. D16, 17131.Google Scholar
  33. Silk, J. and Wright, J. P.: 1969,Monthly Notices Roy., Astron. Soc. 143, 55.Google Scholar
  34. Sisteró, R. F.: 1983,Astrophys. Letters 23, 235.Google Scholar
  35. Stewart, J. M. and Ellis, G. F. R.: 1968,J. Math. Phys. 9, 1072.Google Scholar
  36. Tiwari, R. N., Rao, J. R., and Kanakamedala, R. R.: 1986,Phys. Rev. D34, 327.Google Scholar
  37. Van den Bergh, N. and Wils, P.: 1984, in W. B. Bonnor et al. (eds.), ‘Charged Rotating Dust in General Relativity’,Classical General Relativity, Cambridge University Press, Cambridge.Google Scholar
  38. Weinberg, S.: 1978,Phys. Rev. Letters 40, 223.Google Scholar
  39. Whitman, P. G.: 1982,Phys. Letters A89, 129.Google Scholar
  40. Whitman, P. G.: 1984,Class. Quantum Grav. 1, 319.Google Scholar
  41. Whitman, P. G.: 1985,Phys. Rev. D32, 1857.Google Scholar
  42. Wilczek, F.: 1978,Phys. Rev. Letters 40, 279.Google Scholar
  43. Wright, J. P.: 1965,J. Math. Phys. 6, 103.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Koijam Maniharsingh
    • 1
  1. 1.Department of MathematicsManipur UniversityImphalIndia

Personalised recommendations