Advertisement

Journal of Solution Chemistry

, Volume 3, Issue 7, pp 539–546 | Cite as

Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes

  • Kenneth S. Pitzer
  • Guillermo Mayorga
Article

Abstract

The peculiar behavior of 2–2 and higher valence type electrolytes is discussed in terms of various theories some of which assume, while others do not, an equilibrium between separated ions and ion pairs as distinct chemical species. It is recognized that in some case a distinct species of inner-shell ion pairs is indicated by spectroscopic or ultrasonic data. Nevertheless, there are many advantages in representing, if possible, the properties of these electrolytes by appropriate virial coefficients and without chemical association equilibria. It is shown that this is possible and is conveniently accomplished by the addition of one term to the equations of Parts I and II of this series. The coefficients of these equations are given for nine solutes. It is also noted that these equations have been successfully applied to mixed electrolytes involving one component of the 2–2-type.

Key words

Activity coefficient osmotic coefficient thermodynamics electrolytes aqueous solutions sulfate solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).Google Scholar
  2. 2.
    K. S. Pitzer and G. Mayorga,J. Phys. Chem. 77, 2300 (1973).Google Scholar
  3. 3.
    N. Bjerrum,Kgl. Danske Videnskab, Selskab, Mats.-fys. Medd. 7, No. 9 (1926).Google Scholar
  4. 4.
    A. W. Gardner and E. Glueckauf,Proc. Roy. Soc. A313, 131 (1969).Google Scholar
  5. 5.
    K. S. Pitzer,J. Chem. Soc., Faraday Trans. II68, 101 (1972).Google Scholar
  6. 6.
    T. H. Gronwall, V. K. LaMer, and K. Sandved,Phys. Z. 29, 358 (1928).Google Scholar
  7. 7.
    E. A. Guggenheim,Trans. Faraday Soc. 55, 1714 (1959);56, 1152 (1960).Google Scholar
  8. 8.
    A. W. Gardner and E. Glueckauf,Proc. Roy. Soc. A321, 515 (1971).Google Scholar
  9. 9.
    J. C. Rasaiah,J. Chem. Phys. 56, 3071 (1972).Google Scholar
  10. 10.
    A. R. Davis and B. G. Oliver,J. Phys. Chem. 77, 1315 (1973).Google Scholar
  11. 11.
    R. Larsson,Acta Chem. Scand. 18, 1923 (1964).Google Scholar
  12. 12.
    G. Atkinson and S. K. Kor,J. Phys. Chem. 69, 128 (1965);71, 673 (1967).Google Scholar
  13. 13.
    G. Atkinson and S. Petrucci,J. Phys. Chem. 70, 3122 (1966).Google Scholar
  14. 14.
    M. H. Lietzke and R. W. Stoughton,J. Phys. Chem. 66, 508 (1962).Google Scholar
  15. 15.
    C. W. Davies,Ion Association (Butterworths, London, 1962), Chap. 10.Google Scholar
  16. 16.
    Y. C. Wu, R. M. Rush, and G. Scatchard,J. Phys. Chem. 72, 4048 (1968);73 2047 (1969).Google Scholar
  17. 17.
    R. A. Robinson and R. M. Stokes,Electrolyte Solutions, 2nd rev. ed. (Butterworths, London, 1965).Google Scholar
  18. 18.
    P. G. M. Brown and J. E. Prue,Proc. Roy. Soc. A232, 320 (1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • Kenneth S. Pitzer
    • 1
  • Guillermo Mayorga
    • 1
  1. 1.Inorganic Materials Research Division of the Lawrence Berkeley Laboratory and Department of ChemistryUniversity of CaliforniaBerkeley

Personalised recommendations