Skip to main content
Log in

Ion association of lithium bromide, chloride and picrate and of sodium picrate in 2-propanol at 25°C. I. Conductance measurements

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The molar conductances of lithium bromide, chloride and picrate, and of sodium picrate have been determined as a function of salt concentration in 2-propanol solvent at 25°C. Values of the limiting molar conductance, Λ0, and ion pair formation constant KA have been calculated for each of these salts using both the Fuoss 1978 and the Lee and Wheaton conductance equations. Both of these equations yield comparable results for the present systems. The limiting conductances found here are compored with those reported for lithium chloride in 1-propanol and acetone and with those for the picrates in acetone and 2-butanone, all solvents of comparable dielectric constants. The Rasaiah-Friedman square mound potential, h+−/kT, has been calculated for each salt using the approach of Justice and Justice. These values for 2-propanol have been compared with those for lithium chloride in 1-propanol and in acetone and for the picrates in acetone and 2-butanone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Gilkerson and A. M. Roberts,J. Am. Chem. Soc. 102, 5181 (1980).

    Google Scholar 

  2. M. K. Chantooni and I. M. Kolthoff,J. Phys. Chem. 82, 995 (1978).

    Google Scholar 

  3. R. J. Jasinski and S. Kirkland,Anal. Chem. 39, 1663 (1967).

    Google Scholar 

  4. M. A. Matesich, J. A. Nadas, and D. F. Evans,J. Phys. Chem. 74, 4568 (1970).

    Google Scholar 

  5. M. D. Jackson and W. R. Gilkerson,J. Am. Chem. Soc. 101, 328 (1979).

    Google Scholar 

  6. P. G. N. Mosely and M. Spiro,J. Solution Chem. 1, 39 (1972).

    Google Scholar 

  7. J. L. Hawes and R. L. Kay,J. Phys. Chem. 69, 2420 (1965)

    Google Scholar 

  8. R. L. Kay, B. J. Hales, and G. P. Cunningham,J. Phys. Chem. 71, 3925 (1967).

    Google Scholar 

  9. J. E. Lind, Jr., J. J. Zwolenik, and R. M. Fuoss,J. Am. Chem. Soc. 81, 1557 (1959)

    Google Scholar 

  10. W. Dannhauser and L. W. Bahe,J. Chem. Phys. 40, 3058 (1964).

    Google Scholar 

  11. R. M. Fuoss,Proc. Natl. Acad. Sci. U.S.A. 75, 16 (1978);

    Google Scholar 

  12. R. M. Fuoss,J. Phys. Chem. 82, 2427 (1978)

    Google Scholar 

  13. R. M. Fuoss,J. Solution Chem. 9, 579 (1980).

    Google Scholar 

  14. W. H. Lee and R. J. Wheaton,J. Chem. Soc. Faraday II 74, 743 (1978)

    Google Scholar 

  15. W. H. Lee and R. J. Wheaton,J. Chem. Soc. Faraday II 74, 1456 (1978)

    Google Scholar 

  16. W. H. Lee and R. J. Wheaton,J. Chem. Soc. Faraday II 75, 1128 (1979).

    Google Scholar 

  17. A. D. Pethybridge and S. S. Taba,J. Chem. Soc. Faraday I 76, 368 (1980).

    Google Scholar 

  18. See Ref. 10(b); a prepublication copy of this program was kindly supplied by R. M. Fuoss.

    Google Scholar 

  19. P. G. Wolynes,Ann. Rev. Phys. Chem. 31, 345 (1980)

    Google Scholar 

  20. J.-C. Justice and W. Ebeling,J. Solution Chem. 8, 809 (1979).

    Google Scholar 

  21. M. B. Reynolds and C. A. Kraus,J. Am. Chem. Soc. 70, 1709 (1948).

    Google Scholar 

  22. M. A. Coplan and R. M. Fuoss,J. Phys. Chem. 68, 1177 (1964).

    Google Scholar 

  23. D. F. Evans and P. Gardam,J. Phys. Chem. 73, 158 (1969).

    Google Scholar 

  24. K. Maartmann-Moe,Acta Crystallogr. Sect. B 25, 1425 (1969).

    Google Scholar 

  25. N. Bjerrum,Kgl. Danske Videnskab. 7, No. 9 (1926).

  26. See R. M. Fuoss and C. A. Kraus,J. Am. Chem. Soc. 55, 1019 (1933), for details of these calculations.

    Google Scholar 

  27. J. C. Rasaiah and H. L. Friedman,J. Phys. Chem. 72, 3352 (1968)

    Google Scholar 

  28. J. C. Rasaiah,J. Chem. Phys. 52, 704 (1970).

    Google Scholar 

  29. J.-C. Justice and M.-C. Justice,Faraday Disc. Chem. Soc. 64, 265 (1977).

    Google Scholar 

  30. H. L. Friedman and C. V. Krishnan, inWater: A Comprehensive Treatise, Vol. III, F. Franks, ed., (Plenum Press, New York, 1973) p. 17.

    Google Scholar 

  31. D. F. Evans, J. A. Nadas, and M. S. Matesich,J. Phys. Chem. 75, 1708 (1971).

    Google Scholar 

  32. R. L. Kay,J. Am. Chem. Soc. 82, 2099 (1960).

    Google Scholar 

  33. D. F. Evans, J. Thomas, J. A. Nadas, and M. A. Matesich,J. Phys. Chem. 75, 1714 (1971).

    Google Scholar 

  34. E. Grunwald and E. Price,J. Am. Chem. Soc. 86, 4517 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng-chun, H., Gilkerson, W.R. Ion association of lithium bromide, chloride and picrate and of sodium picrate in 2-propanol at 25°C. I. Conductance measurements. J Solution Chem 12, 161–170 (1983). https://doi.org/10.1007/BF00648054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00648054

Key Words

Navigation