Skip to main content
Log in

Molecular shape and orientational order. Effects in the energy of cavity formation in liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A recently proposed method for calculating the energy of cavity formation in liquids is presented in which the cavity formation process is described as work against the surface forces of the solvent, at the microscopic scale. The energy involved in the cavity formation process is, on the other hand, viewed as a strictly interaction potential energy and the reference cavity, which has the size and the shape of the space occupied by each molecule in the liquid, is considered as having short-range orientational order characteristic of the pure liquid. The method is successfully applied to binary alkane mixtures at infinite dilution whose components have different chemical structure (linear, cyclic and branched alkanes). The importance of the changes in the molecular order of the solute and the solvent occuring in the mixing process is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Glasstone, K. J. Laidler, and H. Eyring,The Theory of Rate Processes (McGraw Hill, New York, 1941).

    Google Scholar 

  2. D. E. O'Reilly and M. Paterson,J. Chem. Phys. 55, 2155 (1971).

    Google Scholar 

  3. M. Claessens, P. Fiasse, O. Fabre, D. Zimmerman, and J. Reisse,Nouveau J. Chim. 8, 357 (1984).

    Google Scholar 

  4. H. Reiss, H. L. Frisch, E. Helfand, and J. L. Lebowitz,J. Chem. Phys. 32, 119 (1960).

    Google Scholar 

  5. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids (Academic Press, New York, 1976).

    Google Scholar 

  6. J. J. Moura Ramos, M. L. Stien, and J. Reisse,Chem. Phys. Lett. 42, 373 (1976).

    Google Scholar 

  7. O. Sinanoglu, inMolecular Interactions, Vol. 3, H. Ratajczak and W. J. Orville-Thomas, eds., (Wiley, 1982), p. 283.

  8. R. A. Pierotti,Chem. Rev. 76, 717 (1976).

    Google Scholar 

  9. N. Morel-Desrosiers and J. P. Morel,Can. J. Chem. 59, 1 (1981).

    Google Scholar 

  10. J. J. Moura Ramos, M. Lemmers, R. Ottinger, M. L. Stien, and J. Reisse,J. Chem. Research (M) 0658 (1977).

  11. B. N. Solomonov, I. S. Antipin, V. V. Gorbachuk, and A. I. Konovalov,J. Gen. Chem. USSR 52, 1917 (1983).

    Google Scholar 

  12. J. J. Moura Ramos, M. S. Dionísio, R. Gonçalves, and H. P. Diogo,Can. J. Chem. 66, 2894 (1988).

    Google Scholar 

  13. J. T. Edward, P. G. Farrel, and F. Shahidi,J. Phys. Chem. 82, 2310 (1978).

    Google Scholar 

  14. R. G. Snyder,J. Chem. Phys. 47, 1316 (1967); R. G. Snyder and J. H. Schachtschneider,Spectrochimica Acta 19, 85 (1963).

    Google Scholar 

  15. J. J. Moura Ramos and J. Reisse,Rev. Port Quim. 26, 61 (1984).

    Google Scholar 

  16. O. Sinanoglu and A. Fernandez,Biophys. Chem. 21, 157 (1985).

    Google Scholar 

  17. E. B. Bagley, T. P. Nelson, J. W. Barlow, and S.-A. Chen,Ind. Eng. Chem. Fundam. 9, 93 (1970).

    Google Scholar 

  18. E. B. Bagley, T. P. Nelson, S.-A. Chen, and J. W. Barlow,Ind. Eng. Chem. Fundam. 10, 27 (1971).

    Google Scholar 

  19. M. R. J. Dack,Aust. J. Chem. 28, 1643 (1975).

    Google Scholar 

  20. J. H. Hildebrand and R. L. Scott,The Solubility of Non-Electrolytes (Dover Publications, New York, 1964).

    Google Scholar 

  21. A. F. M. Barton,J. Chem. Ed. 48, 156 (1971);Chem. Rev. 75, 731 (1975).

    Google Scholar 

  22. R. J. Ouelette and S. H. Williams,J. Am. Chem. Soc. 93, 466 (1971).

    Google Scholar 

  23. E. A. Moelwin-Hughes,The Chemical Statics and Kinetics of Solutions (Academic Press, London, 1971).

    Google Scholar 

  24. M. Barbe and D. Patterson,J. Solution Chem. 9, 753 (1980).

    Google Scholar 

  25. S. N. Battacharyya and D. Patterson,J. Solution Chem. 9, 247 (1980).

    Google Scholar 

  26. T. W. Leland, Jr. and P. S. Chappelear,Ind. Eng. Chem. 60, 15 (1968).

    Google Scholar 

  27. M. Barbe and D. Patterson,J. Phys. Chem. 82, 40 (1978).

    Google Scholar 

  28. R. C. Tolman,J. Chem. Phys. 17, 333 (1949).

    Google Scholar 

  29. J. H. Hildebrand, J. M. Prausnitz, and R. L. Scott,Regular and Related Solutions (Van Nostrand Reinhold, New York, 1970).

    Google Scholar 

  30. E. B. Bagley, T. P. Nelson, and J. M. Scigliano,J. Phys. Chem. 77, 2794 (1973).

    Google Scholar 

  31. B. Kronberg and D. Patterson,J. Chem. Soc. Faraday Trans. I 77 1223 (1981).

    Google Scholar 

  32. J. D. Cox and G. Pilcher,Thermochemistry of Organic and Organometallic Compounds (Academic Press, London, 1970).

    Google Scholar 

  33. C. A. Passut and R. P. Danner,Ind. Eng. Chem., Process Des. Develop. 12, 365 (1973).

    Google Scholar 

  34. N. B. Vargaftik,Tables on the Thermophysical Properties of Liquids and Gases (Hemisphere Pub., Washington, 1975).

    Google Scholar 

  35. J. A. Riddick and W. A. Bunger, inTechniques of Chemistry, A. Weissberger, ed., (Wiley Interscience, New York, 1970).

    Google Scholar 

  36. Physical Constants of Hidrocarbons C 1 to C10,ASTM Data Series, Publication DS 4A (1971).

  37. G. Tardajos, M. Diaz-Peña, A. Lainez, and E. Aicart,J. Chem. Eng. Data 31, 492 (1986).

    Google Scholar 

  38. M. B. Ewing and K. N. Marsh,J. Chem. Thermodyn. 6, 395 (1974).

    Google Scholar 

  39. J. J. Jasper,J. Phys. Chem. Ref. Data 1, 841 (1972).

    Google Scholar 

  40. R. C. Reid, J. M. Prausnitz, and B. E. Poling,The Properties of Gases and Liquids, 4th ed., (McGraw-Hill, New York, 1987).

    Google Scholar 

  41. G. Tardajos, M. Diaz-Peña, and E. Aicart,J. Chem. Thermodyn. 18, 683 (1986).

    Google Scholar 

  42. S. E. M. Haman, M. K. Kumaran, and G. C. Benson,J. Chem. Thermodyn. 16, 537 (1984).

    Google Scholar 

  43. T. M. Letcher, C. Heyward, and W. L. Spiteri,J. Chem. Thermodyn. 15, 395 (1983).

    Google Scholar 

  44. W. K. Stephenson and R. Fuchs,Can. J. Chem. 63, 336 (1985).

    Google Scholar 

  45. D. V. Fenby, J. R. Khurma, Z. S. Kooner, T. E. Block, C. M. Knobler, J. Reeder, and R. L. Scott,Aust. J. Chem. 33, 1927 (1980).

    Google Scholar 

  46. F. Vesely, and J. Pick,Coll. Czech. Chem. Commum. 34, 1792 (1969).

    Google Scholar 

  47. S. K. Yang and J. D. Gomez-Ibanez,J. Chem. Thermodyn. 8, 209 (1976).

    Google Scholar 

  48. R. L. Arenosa, C. Menduina, G. Tardajos, and M. Diaz-Peña,J. Chem. Thermodyn. 11, 159 (1979).

    Google Scholar 

  49. R. L. Snow, J. B. Ott, J. R. Goates, K. M. Marsh, S. O'Shea, and R. H. Stokes,J. Chem. Thermodyn. 18, 107 (1986).

    Google Scholar 

  50. R. Fuchs, E. J. Chambers, and W. K. Stephenson,Can. J. Chem. 65, 2624 (1987).

    Google Scholar 

  51. W. L. Spiteri and T. M. Letcher,Thermochimica. Acta 59, 73 (1982).

    Google Scholar 

  52. E. Wilhelm, A. Inglese, and J. P. E. Grolier,J. Chem. Eng. Data 28, 202 (1983).

    Google Scholar 

  53. J. B. Ott, R. B. Grigg, and J. R. Goates,Aust. J. Chem. 33, 1921 (1980).

    Google Scholar 

  54. F. Kimura, G. C. Benson, and J. C. Halpin,Fluid Phase Equilibria. 11, 245 (1983).

    Google Scholar 

  55. S. E. M. Haman, M. K. Kumaran, and G. C. Benson,Fluid Phase Equilibria. 18, 147 (1984).

    Google Scholar 

  56. S. E. M. Haman and G. C. Benson,J. Chem. Eng. Data 31, 45 (1986).

    Google Scholar 

  57. P. P. S. Saluja, T. M. Young, R. F. Rodewald, F. H. Fuchs, D. Kohli, and R. Fuchs,J. Am. Chem. Soc. 99, 2949 (1977).

    Google Scholar 

  58. T. M. Letcher and R. C. Baxter,J. Chem. Thermodyn. 19, 321 (1987).

    Google Scholar 

  59. M. B. Ewing and K. N. Marsh,J. Chem. Thermodyn. 2, 351 (1970).

    Google Scholar 

  60. J. B. Ott, K. N. Marsh, and R. H. Stokes,J. Chem. Thermodyn. 12, 1139 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, J.J.M. Molecular shape and orientational order. Effects in the energy of cavity formation in liquids. J Solution Chem 18, 957–975 (1989). https://doi.org/10.1007/BF00647896

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647896

Key Words

Navigation