Journal of Solution Chemistry

, Volume 17, Issue 11, pp 1043–1057 | Cite as

Ion mobilities in DMF-water mixtures at 25°C

  • Glen Chittleborough
  • Christopher James
  • Barry Steel
Article

Abstract

Densities and viscosities of mixtures of N,N-dimethylformamide (DMF) with water at 25°C have been determined. Limiting equivalent conductances of cesium chloride, potassium chloride, potassium bromide and potassium thiocyanate in these solvent mixtures at 25°C are presented together with corresponding values of ion association constants and distance of closest approach parameters. The transference number of the potassium ion has been determined in solvent mixtures ranging from 0 to 0.75 mol fraction in DMF in water at 25°C. The conductimetric Hittorf method has been used for both potassium bromide and potassium chloride in solutions of up to 0.496 mole fraction of DMF. For solutions of potassium thiocyanate in 0.5 and 0.75 mole fraction in DMF the cationic transference number has been determined using the moving boundary method. Stokes radii have been evaluated. Transport properties are examined in relation to-solvent properties such as composition, dielectric constant, excess volume of mixing and free volume.

Key words

Density viscosity conductance dimethylformamide aqueous solution mixed solvents transference number ionic conductance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Steel and R. H. Stokes,J. Phys. Chem. 62, 450 (1958).Google Scholar
  2. 2.
    A. I. Vogel,A Textbook of Quantative Analysis, 3rd ed. (Longmans, London 1961), p. 944.Google Scholar
  3. 3.
    B. B. Owen and H. Zeldes,J. Chem. Phys. 18, 1083 (1950).Google Scholar
  4. 4.
    D. E. Mulcahy and B. J. Steel,J. Chem. Eng. Data 30, 191 (1985).Google Scholar
  5. 5.
    C. J. James, D. E. Mulcahy, and B. J. Steel,J. Phys. D: Appl. Phys. 17, 225 (1984).Google Scholar
  6. 6.
    J. E. Lind, J. J. Zwolenik, and R. M. Fuoss,J. Amer. Chem. Soc. 81, 1557 (1959).Google Scholar
  7. 7.
    P. H. Dike,Rev. Sci. Inst. 2, 379 (1931).Google Scholar
  8. 8.
    J. L. Hawkes and R. L. Kay,J. Phys. Chem. 69, 2420 (1965).Google Scholar
  9. 9.
    R. H. Stokes,J. Phys. Chem. 65, 1242, 1277 (1961).Google Scholar
  10. 10.
    M. Spiro, inPhysical Methods of Chemistry, B. W. Rossiter and J. F. Hamilton, eds., Vol. 2 (J. Wiley and Sons, 1986) p. 765, Fig. 8.40b.Google Scholar
  11. 11.
    M. Spiro, inPhysical Methods of Chemistry, B. W. Rossiter and J. F. Hamilton, eds., Vol. 2 (J. Wiley and Sons, 1986), Fig. 8.40b. Reference 10, p. 746.Google Scholar
  12. 12.
    R. A. Robinson and R. H. Stokes,Electrolyte Solutions 2nd ed. (Butterworths, London, 1965), Chapter 7.Google Scholar
  13. 13.
    M. Spiro, inPhysical Methods of Chemistry, B. W. Rossiter and J. F. Hamilton, eds., Vol. 2 (J. Wiley and Sons, 1986), Fig. 8.40b. Reference 10, p. 745.Google Scholar
  14. 14.
    G. R. Leader and J. F. Gormley,J. Amer. Chem. Soc. 73, 5731 (1951).Google Scholar
  15. 15.
    G. Douheret and M. Morenas,Compt. Rend. Ser. C. 264, 729 (1967).Google Scholar
  16. 16.
    C. de Visser, G. Perron, J. E. Desnoyers, W. J. M. Heuvelsland, and G. Somsen,J. Chem. Eng. Data.22, 74 (1977).Google Scholar
  17. 17.
    R. J. Raidon and K. A. Kraus, U.S. Office Saline Water,Res. Develop. Prog. Rep. 302, 52 (1968).Google Scholar
  18. 18.
    R. J. Fuoss and K. L. Hsia,Proc. Nat. Acad. Sci. USA 57, 1550 (1967);58, 1818 (1967).Google Scholar
  19. 19.
    E. W. Washburn, ed.,International Critical Tables of Numerical Data, Physics, Chemistry and Technology, Vol. 5 (National Research Council, New York, 1929), p. 252.Google Scholar
  20. 20.
    B. Garb and M. Hlasko,Roczniki Chem. 10, 248 (1930).Google Scholar
  21. 21.
    M. Spiro, inPhysical Methods of Chemistry, B. W. Rossiter and J. F. Hamilton, eds., Vol. 2 (J. Wiley and Sons, 1986), Fig. 8.40b. Reference 10, p. 784.Google Scholar
  22. 22.
    J.-C. Justice and R. M. Fuoss,J. Phys. Chem. 67, 1707 (1963).Google Scholar
  23. 23.
    C. Treiner, J.-C. Justice, and R. M. Fuoss,J. Phys. Chem. 68, 3886 (1964).Google Scholar
  24. 24.
    E. Renard and J.-C. Justice,J. Solution Chem. 3, 633 (1974).Google Scholar
  25. 25.
    K. L. Hsia and R. J. Fuoss,J. Amer. Chem. Soc. 90, 3055 (1968).Google Scholar
  26. 26.
    J. E. Lind, Jr. and R. M. Fuoss,J. Phys. Chem. 65, 1414 (1961).Google Scholar
  27. 27.
    J. E. Prue and P. J. Sherrington,Trans. Faraday Soc. 57, 1795 (1961).Google Scholar
  28. 28.
    D. P. Ames and P. G. Sears,J. Phys. Chem. 59, 16 (1955).Google Scholar
  29. 29.
    D. F. Evans, T. Tominaga, J. B. Hubbard, and P. G. Wolynes,J. Phys. Chem. 83, 2669 (1979).Google Scholar
  30. 30.
    O. Ya. Samoilov,Structure of Aqueous Electrolyte Solutions and the Hydration of Ions, translated by D. J. G. Ives (Consultants Bureau, New York, 1965).Google Scholar
  31. 31.
    J. L. Kavanau,Water and Solute-Water Interactions, (Holden-Day Inc., San Francisco, 1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Glen Chittleborough
    • 1
  • Christopher James
    • 1
  • Barry Steel
    • 1
  1. 1.Department of Physical and Inorganic ChemistryUniversity of Adelaide

Personalised recommendations