Journal of Solution Chemistry

, Volume 22, Issue 11, pp 1063–1071 | Cite as

Dielectric properties of solutions of antimony (III) halides in methanol

  • G. La Manna
  • M. L. Turco Liveri
  • V. Turco Liveri
  • F. Saiano
  • G. Alonzo


The complex permittivities obtained by time domain reflectometry (TDR) measurements in the frequency range 0.1–15 GHz are reported for solutions of SbF3, SbCl3 and SbBr3 in methanol at 25°C. By increasing the concentration of the solutes, a marked increase of the main relaxation time and of the static permittivity of methanol is observed. These effects have been attributed to the ability of antimony (III) halides to strengthen the hydrogen bonding in methanol and to promote the shift of the dynamic equilibria among the various populations of hydrogen bonded methanol aggregates toward those characterized by a parallel orientation of neighboring dipoles. A second relaxation, occurring at low frequencies, was attributed to the rotational dynamics of the solvated solute molecules.

Key Words

Antimony trihalides methanol dielectric properties hydrogen bonded structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Cole and D. W. Davidson,J. Chem. Phys. 20, 1389 (1952).Google Scholar
  2. 2.
    S. K. Garg and C. P. Smyth,J. Phys. Chem. 69, 1294 (1965).Google Scholar
  3. 3.
    S. Mashimo, S. Kuwabara, S. Yagihara, and K. Higasi,J. Phys. Chem. 90, 3292 (1989).Google Scholar
  4. 4.
    A. D'Aprano, I. Donato, and V. Turco Liveri,J. Solution Chem. 18, 785 (1989).Google Scholar
  5. 5.
    D. Majolino, P. Migliardo, F. Aliotta, S. Magazù, C. Vasi, A. D'Aprano, D. Donato, and V. Turco Liveri,Mole. Phys. 73, 27 (1991).Google Scholar
  6. 6.
    R. H. Cole and D. W. Davidson,J. Chem. Phys. 20, 1294 (1965).Google Scholar
  7. 7.
    H. Mandal, D. G. Frood, M. Habibullah, L. Humeniuk, and S. Walker,J. Chem. Soc. Faraday Trans. I 85, 3045 (1989).Google Scholar
  8. 8.
    J. Sjöblom, T. Skodvin, M. H. Selle, J. O. Saeten, and S. E. Friberg,J. Phys. Chem. 96, 8578 (1992).Google Scholar
  9. 9.
    M. W. Sagal,J. Chem. Phys. 36, 2437 (1962).Google Scholar
  10. 10.
    E. Noreland, B. Gestblom, and J. Sjöblom,J. Solution Chem. 18, 303 (1989).Google Scholar
  11. 11.
    U. Kaatze, M. Schäfer, and R. Pottel,Z. Phys. Chem. Neue Folge 103, 104 (1989).Google Scholar
  12. 12.
    B. Gesblom and J. Sjöblom,Acta Chem. Scand. A 38, 575 (1984).Google Scholar
  13. 13.
    U. Kaatze, D. Adolph, D. Gottlob, and R. Pottel,Ber. Bunsenges. Phys. Chem. 84, 1198 (1980).Google Scholar
  14. 14.
    P. Winsor IV and R. H. Cole,J. Phys. Chem. 86, 2491 (1982).Google Scholar
  15. 15.
    G. Galli, S. Magazù, P. Migliardo, F. Aliotta, D. Majolino, and C. Vasi,Nuovo Cimento 9, 829 (1987).Google Scholar
  16. 16.
    A. M. Bond,J. Electrochem. Soc., Electrochim. Sci. 117, 1145 (1970).Google Scholar
  17. 17.
    G. La Manna, V. Turco Liveri, F. Aliotta, M. E. Fontanella, and P. Migliardo,Coll. Polym. Sci. (in press).Google Scholar
  18. 18.
    R. H. Cole, J. G. Berberian, S. Mashimo, G. Chryssikos, A. Burns, and E. Tombari,J. Appl. Phys. 66, 793 (1989).Google Scholar
  19. 19.
    D. Bertolini, M. Cassettari, and G. Salvetti,J. Chem. Phys. 78, 365 (1983).Google Scholar
  20. 20.
    H. Tanaka and I. Ohmine,J. Chem. Phys. 87, 6128 (1987).Google Scholar
  21. 21.
    I. Ohmine, H. Tanaka, and P. G. Wolynes,J. Chem. Phys. 90, 2786 (1988).Google Scholar
  22. 22.
    U. Kaatze, R. Pottel, and A. Schumacher,J. Phys. Chem. 96, 6017 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • G. La Manna
    • 1
  • M. L. Turco Liveri
    • 1
  • V. Turco Liveri
    • 1
  • F. Saiano
    • 2
  • G. Alonzo
    • 3
  1. 1.Dipartimento di Chimica FisicaUniversità di PalermoPalermoItaly
  2. 2.Istituto di Chimica e Tecnologia dei Prodotti NaturaliCNRPalermoItaly
  3. 3.Dipartimento di Chimica InorganicaUniversità di PalermoPalermoItaly

Personalised recommendations