Skip to main content
Log in

Thermodynamic properties of transition metals in aqueous solution: 3. The heats of mixing aqueous solutions of CdCl2, NiCl2 and ZnCl2 with NaCl at varying ionic strength at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The heat of dilution of aqueous solutions of ZnCl2 and the heats of mixing ΔH m of aqueous solutions of CdCl2, NiCl2, and ZnCl2 with NaCl solutions were measured at 25°C. The heats of mixing were made at constant ionic strengths of 0.5, 1.0, and 3.0 molal. The excess enthalpy equations of Pitzer were then fitted to the resulting heats of dilution and heats of mixing data. The resulting parameters are the temperature derivatives of the activity coefficient mixing parameters in the Pitzer system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Schreiber and L. C. Schreiber,J. Solution Chem. 21, 249 (1992).

    Google Scholar 

  2. D. R. Schreiber, J. Huebner, S. Rhamani, and F. J. Millero,J. Solution Chem. 22, 201 (1993).

    Google Scholar 

  3. A. J. Ellis and I. M. McFadden,Geochim. Cosmochim. Acta 36, 413 (1972).

    Google Scholar 

  4. F. J. Millero,Pure Applied Chem. 57, 1015 (1985).

    Google Scholar 

  5. D. J. Turner, inThermodynamics of Aqueous Systems with Industrial Applications, S. A. Newman, ed., (Am. Chem. Soc., Washington, D. C., 1980), p. 653.

    Google Scholar 

  6. A. M. Rowe and J. C. S. Chou,J. Chem. Eng. Data 15, 61 (1970).

    Google Scholar 

  7. R. C. Wilhoit, inThermodynamics of Aqueous Systems with Industrial Applications, S. A. Newman, ed., (Am. Chem. Soc., Washington, D. C., 1980), p. 467.

    Google Scholar 

  8. F. J. Millero,Proc. of the First International Symposium on Hydrothermal Reactions, Gakujutsu Bunken Fukju-Kai (Assoc. for Science Documents Information, 1983), p. 111.

  9. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  10. K. S. Pitzer, inActivity Coefficients in Electrolyte Solutions (CRC Press, Boca Raton, FL, 1979), p. 157.

    Google Scholar 

  11. C. E. Harvey and J. H. Weare,Geochim. Cosmochim. Acta 44, 981 (1980).

    Google Scholar 

  12. R. T. Pabalon and K. S. Pitzer,Geochim. Cosmochim. Acta 51, 2429 (1987).

    Google Scholar 

  13. A. L. Lehninger,Biochemistry (Worth Publishing, New York, 1975).

    Google Scholar 

  14. J. R. Partington and W. E. Soper,Phil. Mag. S. 7, 209 (1929).

    Google Scholar 

  15. A. L. Robinson and W. E. Wallace,Chem. Rev. 30, 195 (1942).

    Google Scholar 

  16. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolyte Solutions (Reinhold Publishing, New York, 1958).

    Google Scholar 

  17. M. Kh. Karapet'yants, K. K. Vlasenko, A. P. Lebedeva, and S. G. Slolv'eva,Russ. J. Phys. Chem. 45, 1727 (1971).

    Google Scholar 

  18. K. K. Vlasenko and M. Kh. Karapet'yants,Russ. J. Phys. Chem. 45, 1394 (1971)

    Google Scholar 

  19. L. J. Gier and C. E. Vanderzee,J. Chem. Eng. Data 19, 315 (1974).

    Google Scholar 

  20. R. L. Berg and C. E. Vanderzee,J. Chem. Thermodyn. 7, 219 (1975).

    Google Scholar 

  21. J. J. Spitzer, P. P. Singh, K. G. McCurdy, and L. G. Hepler,J. Solution Chem. 7, 81 (1978).

    Google Scholar 

  22. J. J. Spitzer, P. P. Singh, I. V. Olofsson, and L. G. Hepler,J. Solution Chem. 7, 623 (1978).

    Google Scholar 

  23. J. J. Spitzer, I. V. Olofsson, P. P. Singh, and L. G. Hepler,J. Chem. Thermodyn. 11, 233 (1979).

    Google Scholar 

  24. A. Lo Surdo and F. J. Millero,J. Phys. Chem. 84, 710 (1980).

    Google Scholar 

  25. R. F. Pogue and G. Atkinson,J. Solution Chem. 18, 249 (1989).

    Google Scholar 

  26. G. S. Kell,J. Chem. Eng. Data 20, 97 (1975).

    Google Scholar 

  27. Handbook of Chemistry and Physics, 60th edn., R. C. Weast, ed., (CRC Press, Boca Raton, 1979).

    Google Scholar 

  28. K. S. Pitzer,J. Solution Chem. 4, 249 (1975).

    Google Scholar 

  29. L. F. Silvester and K. S. Pitzer,J. Solution Chem. 7, 327 (1978).

    Google Scholar 

  30. K. S. Pitzer,J. Phys. Chem. 87, 2360 (1983).

    Google Scholar 

  31. J. C. Peiper and K. S. Pitzer,J. Phys. Chem. 87, 2364 (1983).

    Google Scholar 

  32. R. C. Phutela and K. S. Pitzer,J. Solution Chem. 15, 649 (1986).

    Google Scholar 

  33. R. A. Robinson and R. H. Stokes,Trans. Faraday Soc. 36, 740 (1940).

    Google Scholar 

  34. J. Ananthaswamy and G. Atkinson,J. Chem. Eng. Data 30, 120 (1985).

    Google Scholar 

  35. V. K. Filippov, N. A. Charykov, and V. Rumyantsev,Dokl. Akad. Nauk. SSSR, Fiz. Khim. 296, 665 (1987);Engl. Transl. 296, 936 (1987).

    Google Scholar 

  36. R. G. Anstiss and K. S. Pitzer,J. Solution Chem. 20, 849 (1991).

    Google Scholar 

  37. H. T. Kim and W. J. Fredrick Jr.,J. Chem. Eng. Data 33, 278 (1988).

    Google Scholar 

  38. V. K. Filippov, N. A. Charykov, and V. Rumyantsev,Zhur. Neorg. Khim. 31, 1861 (1986);Engl. Transl. 31, 1071 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, D.R., De Von Andres, Huebner, J. et al. Thermodynamic properties of transition metals in aqueous solution: 3. The heats of mixing aqueous solutions of CdCl2, NiCl2 and ZnCl2 with NaCl at varying ionic strength at 25°C. J Solution Chem 22, 457–467 (1993). https://doi.org/10.1007/BF00647682

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647682

Key words

Navigation