Journal of Solution Chemistry

, Volume 19, Issue 7, pp 729–742 | Cite as

Volumetric behavior and micelle formation of aqueous surfactant mixtures

  • Michio Yamanaka
  • Shoji Kaneshina
Article

Abstract

A thermodynamic treatment of the volumetric behavior of surfactant mixtures in water have been developed on the basis of the thermodynamic treatment of mixed micelle by Motomura et al. Densities of aqueous solutions of mixtures of decyltrimethylammonium bromide (DeTAB) and dodecyltrimethylammonium bromide (DTAB) have been measured as a function of total molality at constant compositions. The apparent molar volumes of the mixtures have been derived from the density data and the mean partial molar volume of monomeric surfactant mixture V t w , the molar volume of mixed micelle VM/N t M , the voluem of formation of mixed micelle Δ W M V, and the composition of surfactant in the mixed micelle have been evaluated. The V t W , VM/N t M , and Δ W M V have been observed to depend on the composition. The linear dependence of V t W and VM/N t M on the composition indicates that the mixing of DeTAB and DTAB is ideal both in the monomeric and micellar states. This has been confirmed further by the shape of the critical micelle concentration vs. composition curves.

Key words

Volume mixed micelle surfactant mixture decyltrimethylammonium bromide dodecyltrimetylammonium bromide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Vikingstad, inAggregation Processes in Solution, E. Wyn-Jones and J. Gormally, ed., (Elsevier, New York, 1983), p. 100.Google Scholar
  2. 2.
    S. Harada and T. Nakagawa,J. Solution Chem. 8, 267 (1979).Google Scholar
  3. 3.
    R. De Lisi, G. Perron, and J. E. Desnoyers,Can. J. Chem. 58, 959 (1980).Google Scholar
  4. 4.
    J. E. Desnoyers, D. Hétu, and G. Perron,J. Solution Chem. 12, 427 (1983).Google Scholar
  5. 5.
    G. Roux-Desgranges, A. H. Roux, J-P. E. Grolier, and A. Viallard,J. Solution Chem. 11, 357 (1982).Google Scholar
  6. 6.
    N. Funasaki, S. Hada, and S. Neya,J. Phys. Chem. 90, 5469 (1986).Google Scholar
  7. 7.
    N. Nishikido, Y. Imura, H. Kobayashi, and M. Tanaka,J. Coll. and Interfac. Sci. 91, 125 (1983).Google Scholar
  8. 8.
    K. Motomura, M. Yamanaka, and M. Aratono,Colloid and Polymer Sci. 262, 948 (1984).Google Scholar
  9. 9.
    C. T. Chen and F. J. Millero,Nature (London) 266, 707 (1977).Google Scholar
  10. 10.
    Kagaku Benran Kisohen, 3rd edn., Vol. 2, The Chemical Society of Japan, (Maruzen, Tokyo, 1984), p. 3.Google Scholar
  11. 11.
    G. M. Musbally, G. Perron, and J. E. Desnoyers,J. Coll and Interfac. Sci. 54, 80 (1976).Google Scholar
  12. 12.
    D. F. Evans, M. Allen, B. W. Ninham, and A. Fouda,J. Solution Chem. 13, 87 (1984).Google Scholar
  13. 13.
    R. Zana, S. Yiv, C. Strazielle, and P. Lianos,J. Coll. and Interfac. Sci. 80, 208 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Michio Yamanaka
    • 1
  • Shoji Kaneshina
    • 1
  1. 1.College of General EducationKyushu UniversityFukuokaJapan

Personalised recommendations