Advertisement

Journal of Solution Chemistry

, Volume 19, Issue 7, pp 639–664 | Cite as

Volumes and compressibilities of pentanol in aqueous alkyltrimethylammonium bromide solutions at different temperatures

  • R. De Lisi
  • S. Milioto
  • R. E. Verrall
Article

Abstract

Speed of sound and density properties of ternary water-tetradecyltrimethylammonium bromide-pentanol system at 15, 25 and 35°C and of water-hexadecyltrimethylammonium bromide-pentanol system at 25, 35 and 45°C were measured at fixed alcohol concentration as a function of surfactant concentration. The apparent molar volumes Vϕ,R and isentropic compressibilities K ϕ,R S of pentanol in micellar solutions as a function of the surfactant concentration show irregular behavior which depends on the alkyl chain length of the surfactant and tends to disappear with increasing temperature. These anomalies are ascribed to micellar transitions. For both surfactants at high concentrations, Vϕ,R decrease and the magnitude of the change seems to depend on the type of densimeter used. This observation is tentatively explained in terms of a correlation between the micellar structure and features of the densimeter. From this work and literature data, the apparent molar isothermal compressibilities K ϕ,R T of the alcohol in micellar solutions were calculated at 25°C. Vϕ,R, K ϕ,R S and K ϕ,R T are interpreted in terms of the distribution constant of the alcohol between the aqueous and the micellar phases and of the apparent molar property of the alcohol in the micellar and the aqueous phases. For a given surfactant increasing the temperature increases Vϕ,R and K ϕ,R S in the micellar phase while the distribution constant is weakly dependent. At a given temperature, an increase in the alkyl chain length of the surfactant increases the apparent molar volume and slightly changes the apparent molar compressibility of the alcohol in the micellar phase.

Key words

Pentanol tetradecyl- and hexadecyltrimethylammonium bromide apparent and partial molar volumes isentropic and isothermal compressibilities micellar phase pentanol-micelle binding constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. De Lisi, V. Turco Liveri, M. Castagnolo, and A. Inglese,J. Solution Chem. 15, 23 (1986).Google Scholar
  2. 2.
    R. De Lisi, S. Milioto, and R. Triolo,J. Solution Chem. 17, 673 (1988).Google Scholar
  3. 3.
    R. De Lisi, S. Milioto, M. Castagnolo, and A. Inglese,J. Solution Chem. 16, 373 (1987).Google Scholar
  4. 4.
    R. De Lisi, S. Milioto, and V. Turco Liveri,J. Colloid Interface Sci. 117, 64 (1987).Google Scholar
  5. 5.
    R. De Lisi, and S. Milioto,J. Solution Chem. 17, 245 (1988).Google Scholar
  6. 6.
    S. Milioto, D. Romancino, and R. De Lisi,J. Solution Chem. 16, 943 (1987).Google Scholar
  7. 7.
    R. De Lisi and S. Milioto,J. Solution Chem. 16, 676 (1987).Google Scholar
  8. 8.
    R. De Lisi, S. Milioto, and R. E. Verrall,J. Solution Chem. 19, 97 (1990).Google Scholar
  9. 9.
    F. Quirion and J. E. Desnoyers,J. Colloid Interface Sci. 112, 565 (1986).Google Scholar
  10. 10.
    M. Iqbal and R. E. Verrall,J. Phys. Chem. 91, 967 (1987).Google Scholar
  11. 11.
    J. E. Desnoyers and Philip,Can. J. Chem. 50, 1094 (1972).Google Scholar
  12. 12.
    G. S. Kell,J. Chem. Ing. Data 12, 66 (1967).Google Scholar
  13. 13.
    R. De Lisi, S. Milioto, and R. E. Verrall,J. Solution Chem. 19, 665 (1990).Google Scholar
  14. 14.
    G. Lindblom, B. Lindman, and L. Mandell,J. Colloid Interface Sci. 42 400 (1973).Google Scholar
  15. 15.
    P. Ekwall, L. Mandell, and P. Solyom,J. Colloid Interface Sci. 35, 519 (1971).Google Scholar
  16. 16.
    H. Nery, N. Kamenka, M. C. Puyal, R. Rymden, and P. Stilbs,J. Phys. Chem. 88, 5048 (1980).Google Scholar
  17. 17.
    F. Quirion and J. E. Desnoyers,J. Colloid Interface Sci. 115, 176 (1987).Google Scholar
  18. 18.
    R. De Lisi and V. Turco Liveri,Gazzetta Chim. Ital. 13, 371 (1983).Google Scholar
  19. 19.
    C. Treiner,J. Colloid Interface Sci. 93, 33 (1983).Google Scholar
  20. 20.
    R. Zana, S. Yiv, C. Strazielle, and P. Lianos,J. Colloid Interface Sci. 80, 208 (1981).Google Scholar
  21. 21.
    P. Mukerjee,Adv. Colloid Interface Sci. 1, 241 (1967).Google Scholar
  22. 22.
    R. De Lisi, E. Fisicaro, and S. Milioto,J. Solution Chem. 17, 1015 (1988).Google Scholar
  23. 23.
    R. F. Tuddenham and A. E. Alexander,J. Phys. Chem. 66, 1839 (1962).Google Scholar
  24. 24.
    M. T. Bashford and E. M. Woolley,J. Phys. Chem. 89, 3173 (1985).Google Scholar
  25. 25.
    D. F. Evans and P. J. Wightman,J. Colloid Interface Sci. 86, 515 (1982).Google Scholar
  26. 26.
    R. De Lisi, C. Genova, R. Testa, and V. Turco LiveriJ. Solution Chem. 13, 121 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • R. De Lisi
    • 1
  • S. Milioto
    • 1
  • R. E. Verrall
    • 2
  1. 1.Department of Physical ChemistryUniversity of PalermoPalermoItaly
  2. 2.Department of ChemistryUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations