Skip to main content
Log in

Transfer activity coefficient of the proton in water-pyridine mixtures. A comparison of some extrathermodynamic assumptions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Various water-pyridine mixtures have been selected in order to compare several of the most popular extrathermodynamic assumptions involved in the determination of the transfer activity coefficient of the proton, γt(H+). Two techniques have been utilized for this purpose: voltammetry [study of the ferrocene, ferricyanide, or thallium(1) systems] and potentiometry at equilibrium (emf measurements of various galvanic cells, including liquid junctions and hydrogen electrode or silver electrode as a test electrode). The assumptions have been classified into various groups [e.g., γt(Zp+)=γt(Zq+) or γt(X)=γt(Y+)], and the values of γt(H+) have been experimentally determined in each case. The results vary depending upon the basic assumption (several pH units); less important differences (e.g., 0.5 pH unit) occur within a given group, and this may be assigned to the nature of the reference species chosen. A simple model of solvation has been also examined; the application of the law of mass action to the corresponding equilibrium provides results close to the γt(X) =γt(Y+)type of assumptions which ultimately leads to most self-consistent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alexander, A. J. Parker, J. H. Sharp, and W. E. Waghorne,J. Am. Chem. Soc. 94, 1148 (1972).

    Google Scholar 

  2. B. G. Cox, A. J. Parker, and W. E. Waghorne,J. Am. Chem. Soc. 95, 1010 (1973);

    Google Scholar 

  3. J. W. Diggle and A. J. Parker,Electrochim. Acta 18, 1973 (1975).

    Google Scholar 

  4. I. M. Kolthoff and M. K. Chatooni,J. Phys. Chem. 76, 2024 (1972).

    Google Scholar 

  5. J. L. Brisset, R. Gaboriaud, and R. Schaal,J. Phys. Chem. 68, 1506 (1971).

    Google Scholar 

  6. R. Gaboriaud,C. R. Acad. Sci. 270C, 1925 (1970);

    Google Scholar 

  7. R. Gaboriaud,J. Chim. Phys. 66, 10 (1969).

    Google Scholar 

  8. V. A. Pleskov,Zh. Fiz. Khim. 22, 351 (1948).

    Google Scholar 

  9. O. Popovych,Crit. Rev. Anal. Chem. 1, 73 (1970).

    Google Scholar 

  10. H. Strehlow, inThe Chemistry of Nonaqueous Solvents, J. J. Lagowski, ed. (Academic Press, New York, 1966).

    Google Scholar 

  11. J. Lelievre, C. Le Feuvre, and R. Gaboriaud,C. R. Acad. Sci. 275C, 1455 (1972);

    Google Scholar 

  12. J. Lelievre, work in progress.

  13. I. M. Kolthoff and F. G. Thomas,J. Phys. Chem. 69, 3049 (1965).

    Google Scholar 

  14. W. R. Turner and P. J. Elving,Anal. Chem. 37, 467 (1965).

    Google Scholar 

  15. J. L. Brisset,J. Electroanal. Chem. 51, 133 (1974).

    Google Scholar 

  16. R. Gaboriaud,Ann. Chim. 2, 201 (1967);

    Google Scholar 

  17. R. Gaboriaud,J. Chim. Phys. 65, 1115 (1968);

    Google Scholar 

  18. R. Gaboriaud,Bull. Soc. Chim., 347 (1975).

  19. A. Cisak and P. J. Elving,J. Electrochem. Soc. 110, 160 (1963).

    Google Scholar 

  20. L. M. Mukherjee,J. Phys. Chem. 76, 243 (1972).

    Google Scholar 

  21. M. Alfenaar,J. Phys. Chem. 79, 2200 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brisset, JL. Transfer activity coefficient of the proton in water-pyridine mixtures. A comparison of some extrathermodynamic assumptions. J Solution Chem 5, 587–604 (1976). https://doi.org/10.1007/BF00647380

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647380

Key words

Navigation