Journal of Solution Chemistry

, Volume 18, Issue 12, pp 1133–1152 | Cite as

Solubility and phase behavior of nickel oxide in aqueous sodium phosphate solutions at elevated temperatures

  • S. E. ziemniak
  • M. E. Jones
  • K. E. S. Combs
Article

Abstract

A platinum-lined, flowing autoclave facility was used to investigate the solubility/phase behavior of nickel oxide (NiO) in aqueous sodium phosphate solutions between 290 and 560 K. A layer of hydrous nickel oxide was concluded to exist on the nickel oxide surface below 468 K; only at higher temperatures did the anhydrous nickel oxide phase control the nickel ion solubility behavior. The measured solubility behavior was examined via a nickel(II) ion hydrolysis/complexing model and thermodynamic functions for the hydrolysis/complexing reaction equilibria were obtained from a least-squares analysis of the data. The existence of two new nickel ion complexes are reported for the first time: Ni(OH)2(HPO4)= and Ni(OH)3(H2PO4)=. The positive entropy change associated with the formation of Ni(OH)3(H2PO4)= leads to its dominance in alkaline phosphate solutions at elevated temperatures.

Key words

Nickel oxide aqueous solutions metal ion hydrolysis phosphato-complexing equilibrium constant thermodynamics dehydration pressurized water hydrothermal solutions corrosion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Mukaibo, S. Masukawa, M. Maeda, and M. Hoshido,Denki-Kagaku 34, 388 (1966).Google Scholar
  2. 2.
    M. A. Aia,J. Electrochem. Soc. 113, 1045 (1966).Google Scholar
  3. 3.
    C. W. F. T. Pistorius,Z. Phys. Chem. (Frankfort am Main) 34, 287 (1962).Google Scholar
  4. 4.
    T. W. Swaddle and T. C. T. Wong,Can. J. Chem. 56, 363 (1978).Google Scholar
  5. 5.
    K. H. Gayer and A. B. Garrett,J. Am. Chem. Soc. 71, 2973 (1949).Google Scholar
  6. 6.
    P. R. Tremaine and J. C. Leblanc,J. Chem. Thermodyn. 72, 521 (1980).Google Scholar
  7. 7.
    H. Sigel, K. Becker, and D. R. McCormick,Biochim. Biophys. Acta 148, 655 (1967).Google Scholar
  8. 8.
    C. W. Childs,Inorg. Chem. 9, 2465 (1970).Google Scholar
  9. 9.
    F. H. Sweeton, R. E. Mesmer, and C. F. Baes,J. Solution Chem. 3, 191 (1974).Google Scholar
  10. 10.
    R. E. Mesmer and C. F. Baes,J. Solution Chem. 3, 307 (1974).Google Scholar
  11. 11.
    N. C. Treloar, Central Electricity Research Laboratory Report RD/L/N 270/73 (1973). (See WAPD-TM-1302, March 1979).Google Scholar
  12. 12.
    W. L. Marshall and E. V. Jones,J. Phys. Chem. 70, 4028 (1966).Google Scholar
  13. 13.
    D. L. Marquardt,J. Soc. Indust. Appl. Math. 2, 431 (1963).Google Scholar
  14. 14.
    D. D. Wagmanet al., J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).Google Scholar
  15. 15.
    J. W. Larson, P. Cerrutti, H. K. Garber, and L. G. Hepler,J. Phys. Chem. 72, 2902 (1968).Google Scholar
  16. 16.
    C. F. Baes and R. E. Mesmer,The Hydrolysis of Cations (Wiley-Interscience, New York, 1976).Google Scholar
  17. 17.
    S. E. Ziemniak and E. P. Opalka, inProc. Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors eds., G. J. Theus and J. R. Weeks (The Metallurgical Society, Warrendale, PA, 1988), p. 153.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • S. E. ziemniak
    • 1
  • M. E. Jones
    • 1
  • K. E. S. Combs
    • 1
  1. 1.Knolls Atomic Power LaboratoryGeneral Electric CompanySchenectady

Personalised recommendations