Skip to main content
Log in

Estimation of Pitzer's ion interaction parameters for electrolytes involved in complex formation using a chemical equilibrium model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Pitzer's ion interaction model has been widely accepted for calculating the thermodynamic properties for electrolytes at high ionic strength. For weak electrolytes, a better estimation can be obtained by combining the model with chemical equilibria. The method of calculation is to treat each individual species as a single, separated ion. The concentration of each ion will be constrained by the mass balance equation and its activity will be guarded by the stability constants. Including chemical equilibria in Pitzer's model provides not only a better estimation of the thermodynamic properties of weak electrolytes but also a better understanding of the equilibrium among the complexes. The results may be used for correcting the effect from high ionic strength solution when determining the stability constants. When considering chemical equilibria, some of the parameters reported by Pitzer may have to be reestimated. The method of estimation and comparison between final results are presented. The binary system of HF, and the ternary systems of CuCl2 in NaCl and in HCl are used for demonstration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Pitzer,Activity Coefficients in Electrolyte Solution (CRC Press, Boca Raton, 1979).

    Google Scholar 

  2. C. E. Harvie, N. Moller, and J. H. Weare,Geochimica et Cosmochimica Acta 48, 723 (1984).

    Google Scholar 

  3. K. S. Pitzer and L. F. Silvester,J. Solution Chem. 5, 269 (1976).

    Google Scholar 

  4. K. S. Pitzer, R. N. Roy, and L. F. Silvester,J. Am. Chem. Soc. 99, 4930 (1977).

    Google Scholar 

  5. E. Hogfeldt,Stability Constants of Metal-Ion complexes: Part A Inorganic Ligands (Pergamon Press, London, 1982).

    Google Scholar 

  6. J. Bjerrum and L. H. Skibsted,Acta Chem. Scan. 31, 673 (1977).

    Google Scholar 

  7. B. R. Staples,et al., NBS Special Publication 718 (1986).

  8. C. J. Downes and K. S. Pitzer,J. Solution Chem. 5, 389, (1976).

    Google Scholar 

  9. D. M. Himmelblau,Process Analysis by Statistical Methods (Wiley, New York, 1968).

    Google Scholar 

  10. J. L. Kuester and J. H. Mize,Optimization Techniques with Fortran (McGraw-Hill, New York, 1973).

    Google Scholar 

  11. H. H. Borene and T. D. Vries,J. Am. Chem. Soc. 69, 1644 (1947).

    Google Scholar 

  12. W. J. Hamer and Y. C. Wu,J. Phys. Chem. Ref. Data 1, 1047 (1972).

    Google Scholar 

  13. P. McTigue, T. A. O'Donnell, and B. Verity,Aust. J. Chem. 38, 1797 (1985).

    Google Scholar 

  14. J. J. Fritz,J. Phys. Chem. 84, 2241 (1980).

    Google Scholar 

  15. V. K. Filippov, N. A. Charykov, and Y. A. Fedorov,Zhur. Neorg. Khim. 31, 1861 (1986).

    Google Scholar 

  16. R. N. Goldberg,J. Phys. Chem. Ref. Data 8, 1015 (1979).

    Google Scholar 

  17. R. Nasanen,Acta Chem. Scan. 4, 140 (1950).

    Google Scholar 

  18. Y. Awakura, Y. Kawasaki, A. Uno, K. Sato, and H. Majima,Hydrometallurgy 19, 137 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haung, HH. Estimation of Pitzer's ion interaction parameters for electrolytes involved in complex formation using a chemical equilibrium model. J Solution Chem 18, 1069–1084 (1989). https://doi.org/10.1007/BF00647264

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647264

Key words

Navigation