Skip to main content
Log in

Calorimetric study of binary systems of tetraethyleneglycol octylether and polyethyleneglycol with water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Calorimetric measurements have been made of the differential enthalpies of solution as a function of composition of both components in the binary systems tetraethyleneglycol octylether (C8E4)-water and polyethyleneglycol 400 (PEG)-water, as a function of composition, at three different temperatures. Heat capacity changes for dissolution were calculated from the temperature variation of the solution enthalpies. Excess enthalpies and excess heat capacities of mixing were calculated from the differential enthalpies of solution. All measurements on C8E4 were made above the critical micelle concentration (c.m.c.) so the results relate to C8E4 in aggregated form. The thermochemical properties of the C8E4 and PEG systems with water are similar. The differential solution enthalpy of the organic solute in pure water is fairly exothermic and then increases smoothly with increasing solute content. Likewise the solution enthalpy of water in pure C8E4 or PEG is fairly exothermic, but increases steadily to become zero at a water content corresponding to more than five water molecules per ethyleneoxide group. The measurements on the C8E4 system at 40°C were made close to the demixing temperature. The results are compared with previously reported results on the 2-butoxyethanol (BE)-water system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Mitchell, G. J. T. Tiddy, L. Waring, T. Bostock, and M. P. McDonald,J. Chem. Soc. Faraday Trans. I 79, 975 (1983).

    Google Scholar 

  2. J. C. Lang and R. D. Morgan,J. Chem. Phys. 73, 5849 (1980).

    Google Scholar 

  3. B. Andersson and G. Olofsson,Coll. Poly. Sci. 265, 318 (1987).

    Google Scholar 

  4. M. Corti, V. Degiorgio, and M. Zulauf,Phys. Rev. Lett. 48, 1617 (1982).

    Google Scholar 

  5. B. Andersson and G. Olofsson,J. Chem. Soc. Faraday Trans. I 84, 4087 (1988).

    Google Scholar 

  6. B. Andersson and G. Olofsson,J. Solution Chem. 17, 1169 (1988).

    Google Scholar 

  7. G. N. Malcolm and J. S. Rowlinson,Trans. Faraday Soc. 53, 921 (1957).

    Google Scholar 

  8. S. Sunner and I. Wadsö,Sci. Tools 13, 1 (1966).

    Google Scholar 

  9. I. Wadsö,Acta Chem. Scand. 22, 927 (1968).

    Google Scholar 

  10. A.-T. Chen and I. Wadsö,J. Biochem. Biophys. Methods 6, 307 (1982).

    Google Scholar 

  11. J. Suurkuusk and I. Wadsö,Chemica Scripta 20, 155 (1982).

    Google Scholar 

  12. M. Görman-Nordmark, J. Laynez, A. Schön, J. Suurkuusk, and I. Wadsö,J. Biochem. Biophys. Methods 10, 187 (1984).

    Google Scholar 

  13. D. Hallén, S.-O. Nilsson, W. Rothschild, and I. Wadsö,J. Chem. Thermodyn. 18, 429 (1986).

    Google Scholar 

  14. J. Suurkuusk and I. Wadsö,J. Chem. Thermodyn. 6, 667 (1974).

    Google Scholar 

  15. M. Zulauf and J. P. Rosenbusch,J. Phys. Chem. 87, 856 (1983).

    Google Scholar 

  16. J. Koller and E. Killmann,Makromol. Chem. 182, 3579 (1981).

    Google Scholar 

  17. H. Daoust and D. St-Cyr,Macromolecules 17, 596 (1984).

    Google Scholar 

  18. M. A. Stephens and W. S. Tamplin,J. Chem. Eng. News 24, 81 (1979).

    Google Scholar 

  19. R. Kjellander and E. Florin,J. Chem. Soc. Faraday Trans. I 77, 2053 (1981).

    Google Scholar 

  20. G. Karlström,J. Phys. Chem. 89, 4962 (1985).

    Google Scholar 

  21. R. Kjellander,J. Chem. Soc. Faraday Trans. II 78, 2025 (1982).

    Google Scholar 

  22. P.-G. Nilsson, H. Wennerström and B. Lindman,J. Phys. Chem. 87, 1377 (1983).

    Google Scholar 

  23. P.-G. Nilsson and B. Lindman,J. Phys. Chem. 87, 4756 (1983).

    Google Scholar 

  24. S.-O. Nilsson,J. Chem. Thermodyn. 18, 1115 (1986).

    Google Scholar 

  25. U. Onken,Z. Electrochem. 63, 321 (1959).

    Google Scholar 

  26. F. Elizalde, J. Gracia, and M. Costas,J. Phys. Chem. 92, 3565 (1988).

    Google Scholar 

  27. G. Olofsson, unpublished results.

  28. N. Nichols, R. Sköld, C. Spink, J. Suurkuusk, and I. Wadsö,J. Chem. Thermodyn. 8, 1081 (1976).

    Google Scholar 

  29. S. Cabani, P. Gianni, V. Mollica, and L. Lepori,J. Solution Chem. 10, 563 (1981).

    Google Scholar 

  30. J. Biros, J. Pouchly, and A. Zivny,Makromol. Chem. 188, 379 (1987).

    Google Scholar 

  31. S. Saeki, N. Kuwahara, N. Nakata and M. Kaneko,Polymer 17, 685 (1976).

    Google Scholar 

  32. F. E. Bailey Jr. and R. W. Callard,J. Appl. Polym. Sci. 1, 56 (1959).

    Google Scholar 

  33. M. Herskowitz and M. Gottlieb,J. Chem. Eng. Data 30, 233 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, B., Olofsson, G. Calorimetric study of binary systems of tetraethyleneglycol octylether and polyethyleneglycol with water. J Solution Chem 18, 1019–1035 (1989). https://doi.org/10.1007/BF00647261

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647261

Key words

Navigation