Skip to main content
Log in

Solvent structure in aqueous mixtures. III. Ionic conductances in ethanol-water mixtures at 10 and 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Viscosities at 10 and 25°C and dielectric constants at 10°C are reported for ethanol-water mixtures. Precise transference numbers for KBr at 10°C were determined by the moving-boundary method for five solvent mixtures containing up to 20 mole % ethanol. Conductance measurements for the alkali halides and tetraalkylammonium bromides were carried out across the complete range of solvent composition at 25°C, but for the water-rich region only at 10°C. The resulting limiting ionic Walden products confirmed the conclusions arrived at from earlier measurements. The maxima occurring in the water-rich region cannot be attributed solely to a structure-breaking effect owing to the ionic size dependence which is in the wrong direction. The tetraalkylammonium ions in these mixtures do not exhibit an enhanced hydrophobic effect, nor do they appear to enhance structure of any kind. Rather, the addition of alcohol to an aqueous Bu4N+ solution merely reduces the magnitude of the hydrophobic effect, as illustrated by a steadily increasing Walden product in the water-rich region. A decrease in temperature has no effect on the Walden product for the Bu4N+ ion but increases the magnitude of the maxima for the alkali-metal and halide ions. These maxima are attributed to sorting of the solvent components by the ionic charge, due to an acid-base type interaction, so that the proportion of water in the ionic cospheres is greater than in the bulk solvents. The sorting effect is shown to be temperature independent. The oxyanions are shown to exhibit a behavior in these mixtures that cannot be identified at this time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Kay and T. L. Broadwater,Electrochim. Acta 16, 667 (1971).

    Google Scholar 

  2. T. L. Broadwater and R. L. Kay,J. Phys. Chem. 74, 3802 (1970).

    Google Scholar 

  3. R. L. Kay, G. P. Cunningham, and D. F. Evans, inHydrogen-Bonded Solvent Systems, A. K. Covington and P. Jones, eds. (Taylor and Francis, London, 1968), p. 249.

    Google Scholar 

  4. F. Franks and D. J. G. Ives,Quart. Rev. (London) 20, 1 (1966).

    Google Scholar 

  5. Water, a Comprehensive Treatise, F. Franks, ed. (Plenum Press, New York, 1973):

    Google Scholar 

  6. Vol. 2, Chap. 5;

  7. Vol. 2, Chap. 7;

  8. Vol. 2, Chap. 8;

  9. Vol. 2, Chap. 9;

  10. Vol. 2, Chap. 10;

  11. Vol. 3 Chap. 3;

  12. Vol. 3, Chap. 4.

  13. G. J. Janz and R. P. T. Tompkins,Nonaqueous Electrolytes Handbook (Academic Press, New York, 1972), Vol. 1.

    Google Scholar 

  14. R. Zwanzig,J. Chem. Phys. 52, 3625 (1970).

    Google Scholar 

  15. Cannon Instrument Co., State College, Pennsylvania.

  16. G. A. Vidulich and R. L. Kay,Rev. Sci. Instrum. 37, 1662 (1966).

    Google Scholar 

  17. R. L. Kay and K. S. Pribadi,Rev. Sci. Instrum. 40, 726 (1969).

    Google Scholar 

  18. R. L. Kay, G. A. Vidulich, and A. Fratiello,Chem. Instrum. 1, 361 (1969).

    Google Scholar 

  19. D. F. Evans, C. Zawoyski, and R. L. Kay,J. Phys. Chem. 69, 3878 (1965).

    Google Scholar 

  20. R. L. Kay, B. J. Hales, and G. P. Cunningham,J. Phys. Chem. 71, 3925 (1967).

    Google Scholar 

  21. R. L. Kay, C. Zawoyski and D. F. Evans,J. Phys. Chem. 69, 4208 (1965).

    Google Scholar 

  22. A. Fratiello and R. L. Kay,J. Solution Chem. 3, 857 (1974).

    Google Scholar 

  23. International Critical Tables (McGraw-Hill Book Co., New York, 1929), Vol. V, p. 22.

  24. T. L. Broadwater and R. L. Kay,J. Solution Chem. 4, 475 (1975).

    Google Scholar 

  25. J. Wyman, Jr.,J. Am. Chem. Soc. 53, 3292 (1931).

    Google Scholar 

  26. G. Akerlof,J. Am. Chem. Soc. 54, 4125 (1932).

    Google Scholar 

  27. J. R. Graham and A. R. Gordon,J. Am. Chem. Soc. 79, 2350 (1957).

    Google Scholar 

  28. R. L. Kay, Transference Number Measurements, inTechniques in Electrochemistry, A. Salkind and E. Yeager eds. (Wiley-Interscience, New York, 1973), Vol. II, p. 61.

    Google Scholar 

  29. R. L. Kay and J. L. Dye,Proc. Nat. Acad. Sci. 49, 5 (1963).

    Google Scholar 

  30. International Critical Tables (McGraw-Hill Book Co., 1928), Vol. III.

  31. R. M. Fuoss and F. Accascina,Electrolyte Conductance (Interscience, New York, 1959).

    Google Scholar 

  32. R. L. Kay,J. Am. Chem. Soc. 82, 2099 (1960).

    Google Scholar 

  33. J. L. Hawes and R. L. Kay,J. Phys. Chem. 69, 2420 (1965).

    Google Scholar 

  34. J. R. Graham, G. S. Kell, and A. R. Gordon,J. Am. Chem. Soc. 79, 2352 (1957).

    Google Scholar 

  35. H. O. Spivey and T. Shedlovsky,J. Phys. Chem. 71, 2165 (1967).

    Google Scholar 

  36. D. F. Evans and P. Gardam,J. Phys. Chem. 72, 3281 (1968).

    Google Scholar 

  37. H. S. Frank,J. Chem. Phys. 23, 2023 (1955).

    Google Scholar 

  38. R. L. Kay, D. F. Evans, and M. A. Matesich, inSolute-Solvent Interactions J. Coetzee and C. D. Ritchie, eds. (Marcel Dekker, New York, 1976), Vol. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kay, R.L., Broadwater, T.L. Solvent structure in aqueous mixtures. III. Ionic conductances in ethanol-water mixtures at 10 and 25°C. J Solution Chem 5, 57–76 (1976). https://doi.org/10.1007/BF00647181

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647181

Key words

Navigation