Advertisement

Journal of Solution Chemistry

, Volume 5, Issue 1, pp 17–31 | Cite as

Molecular motion and interactions in aqueous carbohydrate solutions. II. Nuclear-magnetic-relaxation studies

  • A. Suggett
  • S. Ablett
  • P. J. Lillford
Article

Abstract

Nuclear-magnetic-relaxation studies of a range of aqueous mono- and disaccharide solutions are reported. These include17O relaxation of solvent and1H,2H,13C, and17O relaxation of various solutes. The limitations of nuclear-magnetic relaxation for providing direct indications of solvent motions or extents of hydration of these sugars are outlined. In contrast to the solvent studies, the motional properties of the solutes themselves have been reasonably well defined, with1H,2H, and13C studies of the sugar ring C−H groups all indicating very similar rotational correlation times. Shorter correlation times estimated for the −CH2OH and −OH side chains, implying that internal motions make a significant contribution to the relaxation of these groups. Differences in reorientation rates of pentose monosaccharides, hexose monosaccharides, and disaccharides are discussed in terms of molecular size and solvent interactions. In every case examined, the solute NMR rotational correlation time is in serious disagreement with that expected from previous dielectric-relaxation studies. Some of the implications of this discrepancy are considered.

Key words

Aqueous hydration sugar carbohydrate nuclear-magnetic relaxation NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Suggett and A. H. Clark,J. Solution Chem. 5, 1 (1976).Google Scholar
  2. 2.
    M. J. Tait, A. Suggett, F. Franks, S. Ablett, and P. A. Quickenden,J. Solution Chem. 1, 131 (1972).Google Scholar
  3. 3.
    D. Rittenberg and C. Graff,J. Am. Chem. Soc. 80, 3371 (1958).Google Scholar
  4. 4.
    S. Meiboom and D. Gill,Rev. Sci. Instr. 35, 688 (1958).Google Scholar
  5. 5.
    F. Franks, D. S. Reid, and A. Suggett,J. Solution Chem. 2, 99 (1973).Google Scholar
  6. 6.
    H. W. Spiess, B. B. Garrick, R. K. Shaline, and S. W. Rabideau,J. Chem. Phys. 51, 1201 (1969).Google Scholar
  7. 7.
    J. R. Zimmermans and W. E. Brittin,J. Phys. Chem. 61, 1328 (1957).Google Scholar
  8. 8.
    A. Suggett, inWater, a Comprehensive Treatise, Vol. 4, F. Franks ed., (Plenum Press, New York, 1975), p. 519.Google Scholar
  9. 9.
    A. S. Perlin, B. Casu, and H. J. Koch,Can. J. Chem. 48, 2596 (1970).Google Scholar
  10. 10.
    S. S. C. Chu and G. A. Jeffrey,Acta Cryst. A24, 830 (1968).Google Scholar
  11. 11.
    D. E. Dorman and J. D. Roberts,J. Am. Chem. Soc. 93, 4463 (1971).Google Scholar
  12. 12.
    E. V. Goldammer and H. G. Hertz,J. Phys. Chem. 74, 3734 (1970).Google Scholar
  13. 13.
    J. B. Hasted, inWater, a Comprehensive Treatise, Vol. 1, F. Franks, ed. (Plenum Press, New York, 1972), p. 304.Google Scholar
  14. 14.
    B. R. Garrett, A. B. Denison, and S. W. Rabideau,J. Phys. Chem. 71, 2606 (1967).Google Scholar
  15. 15.
    J. C. Hindman, A. J. Zeilen, A. Svirmickas, and M. Wood,J. Chem. Phys. 54, 621, (1971).Google Scholar
  16. 16.
    H. Bluyssen, J. Verhoeven, and A. Dynamus,Phys. Lett. A25, 214 (1967).Google Scholar
  17. 17.
    M. D. Zeidler, inWater, a Comprehensive Treatise, Vol. 2, F. Franks, ed. (Plenum Press, New York, 1973), p. 547.Google Scholar
  18. 18.
    M. A. Kabayama, D. Patterson, and L. Piche,Can. J. Chem. 36, 557, 563 (1958).Google Scholar
  19. 19.
    F. Franks, inHydrogen-Bonded Solvent Systems, A. K. Covington and P. Jones, eds. (Taylor and Francis, London, 1968).Google Scholar
  20. 20.
    C. M. Preston and L. D. Hall,Carbohydr. Res. 37, 267 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. Suggett
    • 1
  • S. Ablett
    • 1
  • P. J. Lillford
    • 1
  1. 1.Basic Studies UnitUnilever Research Colworth/WelwynSharnbrookUK

Personalised recommendations