Skip to main content
Log in

Quantum relativistic theory of the cyclotron radiation in strongly-magnetized plasmas: Fine structure of the spectra and maser effect

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Full quantum relativistic treatment of the cyclotron/synchrotron emission and absorption in tenuous plasma with superstrong magnetic fields is developed for the case when the radiation modes are linearly polarized. Spectra of emission, absorption and polarization are investigated both analytically and numerically for the thermal distribution of the radiating particles and for distribution with anisotropic temperature. Quantum relativistic effects lead to a fine structure of the cyclotron harmonics with typical spacing (atBB c = 4.41 × 1013 G) ∼vΩ B (B/B c), where ν=1,2, ... is the harmonic number, and Ωc is the cyclotron frequency. The fine structure is the most developed for subrelativistic temperatures and magnetic fields at not too small angles\(\vartheta \) between the field and the wave-vector. For essentially non-relativistic temperatures the fine structure can be observed in a wide angle range,\(\cos ^2 \vartheta \gg T_\parallel /mc^2 \), if\(\sqrt {2T_\parallel mc^2 } \cos \vartheta \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{< } T_ \bot \), i.e., for distributions with strong transverse anisotropyT T The transverse anisotropy may also lead to the maser amplification of the cyclotron radiation in the narrow frequency ranges corresponding to the fine structure peaks in the emissivity spectra. This occurs for sufficiently high fieldsBB c(T /T ), and angles\(\vartheta \) not too close to 0 or π/2. These effects can be observed in X-ray and gamma-ray radiation of the objects associated with strongly magnetized neutron stars (particularly of the gamma-ray bursters).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleksandrov, A. F., Bogdankevich, L. S., and Rukhadze, A. A.: 1988,The Principles of the Plasma Electrodynamics, Vysshaya Shkola, Moscow (in Russian).

    Google Scholar 

  • Baring, M. G.: 1988,Monthly Notices Roy. Astron. Soc. 235, 51.

    Google Scholar 

  • Bezchastnov, V. G. and Pavlov, G. G.: 1988,Astrophys. Space Sci. 148, 257 (Paper I).

    Google Scholar 

  • Brainerd, J. J. and Lamb, D. Q.: 1987,Astrophys. J. 313, 231.

    Google Scholar 

  • Brainerd, J. J. and Petrosian, V.: 1988,Astrophys. J. 320, 703.

    Google Scholar 

  • Brainerd, J. J.: 1988,Astrophys. J. 320, 714.

    Google Scholar 

  • Fenimore, E. E., Conner, J. P., Epstein, R. I., Klebesadel, R. W., Laros, J. G., Yoshida, A., Fujii, M., Hayashida, K., Itoh, M., Murakami, T., Nishimura, J., Yamagami, T., Kondo, I., and Kawai, M.: 1988,Astrophys. J. 335, L71.

    Google Scholar 

  • Harding, A. K. and Preece, R.: 1987,Astrophys. J. 319, 939.

    Google Scholar 

  • Herold, H., Ruder, H., and Wunner, G.: 1981,Plasma Phys. 23, 775.

    Google Scholar 

  • Herold, H., Ruder, H., and Wunner, G.: 1982,Astron. Astrophys. 115, 96.

    Google Scholar 

  • Kaminker, A. D. and Yakovlev, D. G.: 1982,Zh. Teor. Matem. Fiz. 49, 1012.

    Google Scholar 

  • Kirk, J. G.: 1980,Plasma Phys. 22, 639.

    Google Scholar 

  • Kirk, J. G. and Cramer, N. F.: 1985,Austral. J. Phys. 38, 715.

    Google Scholar 

  • Landau, L. D. and Lifshits, E. M.: 1976,Statistical Physics, Part 1, §78, Nauka, Moscow (in Russian).

    Google Scholar 

  • Mazets, E. P., Golenetskii, S. V., Aptekar, R. L., Guryan, Yu. A., and Ilyinskii, V. N.: 1981,Nature 290, 378.

    Google Scholar 

  • Melrose, D. B. and Zheleznyakov, V. V.: 1981,Astron. Astrophys. 95, 86.

    Google Scholar 

  • Mitrofanov, I. G. and Pozanenko, A. S.: 1987,Zh. Eksperim. Teor. Fiz. 93, 1951.

    Google Scholar 

  • Mitrofanov, I. G., Chernenko, A. M., Dolidze, V. Sh., Dyatchkov, A. V., Khavenson, N. G., Kozlenkov, A. A., Kucherova, R. N., Pozanenko, A. S., Vilchinskaja, A. S., Barat, C., Atteria, J.-L., Jourdain, E., Niel, M., Talon, R., Vedrenne, G., Surkov, Yu. A., Moskaleva, L. P., Mitugov, A. G., Zaytseva, S. E., Kharukova, V. P., and Scheglov, O. P.: 1989, Preprint-1551 of the Space Research Institute, Academy of Sciences of the USSR, Moscow.

  • Pavlov, G. G.: 1986,Proc. Joint Varenna-Abastumani Int. School and Workshop on Plasma Astrophysics, Sukhumi 19–28 May 1986, ESA SP-251, p. 383.

  • Pavlov, G. G. and Gnedin, Yu. N.: 1984,Soviet Sci. Rev. Ser. E.: Astrophysics and Space Physics, Vol. 3, p. 197.

    Google Scholar 

  • Pavlov, G. G., Shibanov, Yu. A., and Yakovlev, D. G.: 1980,Astrophys. Space Sci. 73, 39.

    Google Scholar 

  • Sagdeev, R. Z. and Shafranov, V. D.: 1960,Zh. Eksperim. Teor. Fiz. 39, 181.

    Google Scholar 

  • Sokolov, A. A. and Ternov, I. M.: 1986,Radiation from Relativistic Electrons, A.I.P., New York.

    Google Scholar 

  • Sudan, R. N.: 1963,Phys. Fluids 6, 57.

    Google Scholar 

  • Sudan, R. N.: 1965,Phys. Fluids 8, 153.

    Google Scholar 

  • Svetozarova, G. I. and Tsytovich, V. N.: 1962,Izv. Vysh. Uchebn. Zaved. Radiofizika 8, 813.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezchastnov, V.G., Pavlov, G.G. Quantum relativistic theory of the cyclotron radiation in strongly-magnetized plasmas: Fine structure of the spectra and maser effect. Astrophys Space Sci 178, 1–39 (1991). https://doi.org/10.1007/BF00647113

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647113

Keywords

Navigation