Advertisement

Journal of Solution Chemistry

, Volume 19, Issue 6, pp 555–568 | Cite as

The enthalpies of solution and crystallization of sodium nitrate in water at 25°C

  • V. Pekárek
  • V. Vacek
  • S. Kolařík
Article

Abstract

The differential enthalpies of solution of sodium nitrate in water have been measured calorimetrically at 25°C, from 0.5 to 10.4 mol (kg H2O)−1. The concentration dependence is described by the equation ΔH=20.4537+1.0562m1/2-7.0568m+2.8659m3/2-0.3382m2 From the calorimetric measurements, the enthalpy of crystallization of sodium nitrate was calculated as ΔHc=9.98±0.16 kL-mol-1. The literature data on the solubility, activity and osmotic coefficients of NaNO3 at 25°C yielded a value of −9.98±0.38 kJ-mol−1. The good agreement between the experimental and calculated ΔHc values indicate the reliability of the input data.

Key words

Activity coefficients enthalpy of crystallization enthalpy of solution osmotic coefficients sodium nitrate solubility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. B. Parker,Natl. Stand. Ref. Data Series NSRDS-NBS 2 (1965).Google Scholar
  2. 2.
    E. I. Akhumov, L. P. Zhilina, and N. I. Savchenko,Zhur. Prikl. Khim. 14, 668 (1971).Google Scholar
  3. 3.
    L. P. Zhilina and E. I. Akhumov,Zhur. Fiz. Khim. 50, 784 (1976).Google Scholar
  4. 4.
    E. I. Akhumov and T. L. Khrenova,Zhur. Fiz. Khim. 45, 2737 (1971).Google Scholar
  5. 5.
    T. L. Khrenova, E. I. Akhumov, and L. P. Zhilina,Zhur. Prikl. Khim. 43, 1599 (1970).Google Scholar
  6. 6.
    T. L. Khrenova and E. I. Akhumov,Zhur. Fiz. Khim. 48 717 (1974).Google Scholar
  7. 7.
    G. A. Krestov and G. I. Kurakina,Zhur. Neorg. Khim. 19, 886 (1974).Google Scholar
  8. 8.
    D. Blaho, M. Abbrent, and V. Pekárek,Chem. Zvesti 30, 21 (1976).Google Scholar
  9. 9.
    K. P. Mishchenko and L. P. Shpigel,Zhur. Obshch. Khim. 37, 10 (1976).Google Scholar
  10. 10.
    E. Lange and A. L. Robinson,Z. Phys. Chem. 148, 97, (1930).Google Scholar
  11. 11.
    E. Lange and W. Martin,Z. Phys. Chem. A180, 233, (1937).Google Scholar
  12. 12.
    Y. C. Wu and W. J. Hamer,J. Phys. Chem. Ref. Data 9, 513 (1980).Google Scholar
  13. 13.
    J. H. Tassel and W. W. Wendlandt,J. Am Chem. Soc. 81, 813 (1959).Google Scholar
  14. 14.
    I. E. Voznesenskaya,Extended Tables of Activity and Osmotic Coefficients in Aqueus Solutions for 150 Electrolytes at 25°C, G. I. Mikulin, ed., (Khimiya, Leningrad, 1968) (in Russian).Google Scholar
  15. 15.
    P. Mondain-Monval,Ann. Chim. 3, 72 (1925).Google Scholar
  16. 16.
    F. L. Haigh,J. Am. Chem. Soc. 34, 1137 (1912).Google Scholar
  17. 17.
    M. Berthelot,Ann. Chim. Phys. 4, 101 (1875).Google Scholar
  18. 18.
    J. Thomsen,j. Prakt. Chem. 17, 175, (1878).Google Scholar
  19. 19.
    E. Stackelberg,Z. Physik. Chem. 26, 533 (1898).Google Scholar
  20. 20.
    A. Winkelmann,Ann. Physik 149, 1 (1873).Google Scholar
  21. 21.
    S. Kolařík, V. Pekárek, and V. Vacek,Chem. Prumysl 32/57, 516 (1982), (in Czech).Google Scholar
  22. 22.
    A. T. Williamson,Trans. Faraday Soc. 40, 421 (1944).Google Scholar
  23. 23.
    L. K. Brice,J. Chem. Ed. 60, 387 (1983).Google Scholar
  24. 24.
    G. P. Allakhverdov, B. D. Stepin, and N. I. Sorokin,Determination of the Heat of Crystallization of Salts from Solution in: Crystallization (Naukh. Trudy IREA, Moscow, 1976) (in Russian).Google Scholar
  25. 25.
    A. N. Kirgintsev and A. V. Lukyanov,Zhur. Neorg. Khim. 12, 2032 (1967).Google Scholar
  26. 26.
    F. D. Rossini, D. D. Wagman, W. H. Ewans, S. Levine, and I. Jaffe,Selected Values of Chemical Thermodynamic Properties (Natl. Bur. Stand. Circ. 5OO, Washington, D. C., 1952).Google Scholar
  27. 27.
    V. Vacek, V. Pekárek, and P. V. Ilič,Thermochim. Acta 90, 33 (1985).Google Scholar
  28. 28.
    W. J. Hamer and Y. C. Wu,J. Phys. Chem. Ref. Data 1, 1047 (1972).Google Scholar
  29. 29.
    Gmelin's Handbuch der Anorganischen Chemie, Syst. No. 21, Natrium (Verlag Chemie, Weinheim, 1966).Google Scholar
  30. 30.
    H. Šimková and E. Erdös,Coll. Czech. Chem. Commun. 24 694 (1959).Google Scholar
  31. 31.
    International Critical Tables, Vol. 4, (McGraw-Hill, New York, 1928).Google Scholar
  32. 32.
    J. N. Pearce and H. Hopson,J. Phys. Chem. 41, 535 (1937).Google Scholar
  33. 33.
    Gmelin's Handbuch der Anorganischen Chemie, Lithium-Natrium (Verlag Chemie, Weinheim, 1927).Google Scholar
  34. 34.
    M. Broul, J. Nyvlt, and O. Söhnel,Solubility in Inorganic Two-component Systems (Elsevier, Amsterdam, 1980).Google Scholar
  35. 35.
    F. W. Linke and A. Seidell,Solubilities of Inorganic and Metal Organic Compounds (Van Nostrand, New York, 1953).Google Scholar
  36. 36.
    A. Chrétien,Ann. Chim. (Paris) 129, 43, 155 (1929).Google Scholar
  37. 37.
    E. Cornec,Caliche 10, 488 (1928, 1929).Google Scholar
  38. 38.
    J. E. Ricci,J. Am. Chem. Soc. 56, 301 (1934).Google Scholar
  39. 39.
    W. Kangro and A. Groeneveld,Z. Phys. Chem. (Neue Folge) 32, 110 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • V. Pekárek
    • 1
  • V. Vacek
    • 2
  • S. Kolařík
    • 3
  1. 1.Institute of Inorganic ChemistryCzechoslovak Academy of SciencesPraha 6Czechoslovakia
  2. 2.Chemical Engineering DepartmentInstitute of Chemical TechnologyPraha 6Czechoslovakia
  3. 3.Chemopetrol, Institute of Inorganic ChemistryÚstí nad LabemCzechoslovakia

Personalised recommendations