Skip to main content
Log in

Isopiestic determination of the osmotic and activity coefficients of aqueous Lu2(SO4)3 at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Osmotic coefficients have been measured for aqueous Lu2(SO4)3 solutions from 0.12402 to 0.89631 mol-kg−1 at 25°C by use of the isopiestic method; these measurements extend into the supersaturated molality region. Since there was a lack of activity data for Lu2(SO4)3 solutions at lower molalities, they were approximated by equating them to results for La2(SO4)3 from freezing temperature depression measurements. The combined osmotic coefficients were then used to derive mean molal activity coefficients for Lu2(SO4)3 solutions. The osmotic coefficients decrease to 0.307 as their minimum value and the mean molal activity coefficients decrease to 0.0069. When these activities were combined with our previously reported solubility of 0.6260±0.0017 mol-kg−1 for Lu2(SO4)3·8H2O, a thermodynamic solubility product of 2.3×10−10 was obtained. This value yields the Gibbs energy of formation ΔG °f (Lu2(SO4)3·8H2O, cr)=−5518.9±16.4 kJ-mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Pitzer and L. F. Silvester,J. Phys. Chem. 82, 1239 (1978).

    Google Scholar 

  2. R. A. Robinson,J. Am. Chem. Soc. 59, 84 (1937).

    Google Scholar 

  3. C. H. Brubaker, Jr.,J. Am. Chem. Soc. 78, 5762 (1956); K. O. Groves, J. L. Dye, and C. H. Brubaker, Jr.,J. Am. Chem. Soc. 82, 4445 (1960).

    Google Scholar 

  4. N. O. Smith,J. Am. Chem. Soc. 69, 91 (1947).

    Google Scholar 

  5. E. M. Hattox and T. de Vries,J. Am. Chem. Soc. 58, 2126 (1936);

    Google Scholar 

  6. A. K. Covington, M. A. Hakeem, and W. F. K. Wynne-Jones,J. Chem. Soc. 4394 (1963).

  7. H. Majima and Y. Awakura,Metall. Trans. B 16, 433 (1985).

    Google Scholar 

  8. C. Yamauchi and H. Sakao,Trans. Japan Inst. Met. 28, 327 (1987).

    Google Scholar 

  9. C. Yamauchi, T. Fujisawa, and H. Sakao,Trans. Japan Inst. Met. 29, 150 (1988).

    Google Scholar 

  10. R. L. Montgomery,Heats of Formation of Lathanum Chloride, Lanthanum Sulfate, and Lathanum Sulfate Enneahydrate (U. S. Bur. Mines, Rept. Invest. 5445, 1959).

  11. J. A. Rard,J. Solution Chem. 17, 499 (1988).

    Google Scholar 

  12. C. F. Baes, Jr. and R. E. Mesmer,The Hydrolysis of Cations (Wiley, New York, 1976), p. 137.

    Google Scholar 

  13. A. A. Noyes and J. Johnston,J. Am. Chem. Soc. 31, 987 (1909).

    Google Scholar 

  14. F. Hovorka and W. H. Rodebush,J. Am. Chem. Soc. 47, 1614 (1925).

    Google Scholar 

  15. A. Busch, G. G. Grau, W. Kast, A. Klemenc, W. Kohl, C. Kux, G. Meyerhoff, A. Neckel, E. Ruhtz, K. Schäfer, and S. Valentiner,Gleichgewichte Dampf-Kondensat und Osmotische Phänomene; Landolt-Börnstein, Vol. 2a (Springer, Berlin, 1960), p. 876.

    Google Scholar 

  16. C. C. Nathan, W. E. Wallace, and A. L. Robinson,J. Am. Chem. Soc. 65, 790 (1943).

    Google Scholar 

  17. E. Lange,Forstch. Chem. Phys. Phys. Chem. 19, 1 (1928).

    Google Scholar 

  18. J. A. Rard,J. Solution Chem. 14, 457 (1985).

    Google Scholar 

  19. W. J. Hamer and Y.-C. Wu,J. Phys. Chem. Ref. Data 1, 1047 (1972).

    Google Scholar 

  20. J. A. Rard, A. Habenschuss, and F. H. Spedding,J. Chem. Eng. Data 21, 374 (1976).

    Google Scholar 

  21. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd edn., (Butterworths, London, 1965).

    Google Scholar 

  22. R. M. Izatt, D. Eatough, J. J. Christensen, and C. H. Bartholomew,J. Chem. Soc. (A), Inorg. Phys. Theor. 47 (1969).

  23. J. A. Rard, H. O. Weber, and F. H. Spedding,J. Chem. Eng. Data 22, 187 (1977).

    Google Scholar 

  24. F. H. Spedding, H. O. Weber, V. W. Saeger, H. H. Petheram, J. A. Rard, and A. Habenschuss,J. Chem. Eng. Data 21, 341 (1976).

    Google Scholar 

  25. F. H. Spedding, J. A. Rard, and A. Habenschuss,J. Phys. Chem. 81, 1069 (1977).

    Google Scholar 

  26. J. A. Rard,J. Chem. Eng. Data 32, 334 (1987).

    Google Scholar 

  27. Z. Libus', E. Zak, and T. Sadowska,J. Chem. Thermodyn. 16, 257 (1984).

    Google Scholar 

  28. S. Siekierski, T. Mioduski, and M. Salomon,Solubility Data Series, Vol. 13, Scandium, Yttrium, Lanthanum and Lanthanide Nitrates (Pergamon Press, Oxford, 1983).

    Google Scholar 

  29. F. H. Spedding, M. A. Mohs, J. L. Derer, and A. Habenschuss,J. Chem. Eng. Data 22, 142 (1977).

    Google Scholar 

  30. Y. Iguchi, M. Sci. Thesis, Osaka University (1986).

  31. M. M. Farrow and N. Purdie,J. Solution Chem. 2, 503 (1973).

    Google Scholar 

  32. T. Sekine,J. Inorg. Nucl. Chem. 26, 1463 (1964).

    Google Scholar 

  33. T. Sekine,Acta Chem. Scand. 19, 1469 (1965).

    Google Scholar 

  34. R. G. de Carvalho and G. R. Choppin,J. Inorg. Nucl. Chem. 29, 725 (1967).

    Google Scholar 

  35. CODATA Key Values for Thermodynamics, J. D. Cox, D. D. Wagman, and V. A. Medvedev, eds., (Hemisphere, New York, 1989).

    Google Scholar 

  36. J. A. Rard and L. R. Morss,Handbook on the Physics and Chemistry of Rare Earths (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rard, J.A. Isopiestic determination of the osmotic and activity coefficients of aqueous Lu2(SO4)3 at 25°C. J Solution Chem 19, 525–541 (1990). https://doi.org/10.1007/BF00647027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647027

Key words

Navigation