Skip to main content
Log in

Correlation and prediction of liquid-liquid distribution coefficients in aqueous systems using a modified Wilson model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A modified Wilson model is tested for its ability to correlate and predict distribution coefficients in two representative systems: 1-butanol-water and cyclohexanewater. The model is fitted to ternary equilibrium data for various solutes in these systems using a procedure involving minimization of the least-squares distance between calculated and experimental logarithmic distribution ratios. In addition, benzene-water, hexane-water, and cyclohexane-water distribution coefficients for infinitely diluted liquid solutes are predicted using only binary system information. All computations involve using both van der Waals and molar volumes as structural parameters to account for the geometry of the molecules studied. Satisfactory representations of experimental distribution ratios and fairly accurate distribution coefficients at infinite dilution are obtained for both systems. However, in a number of cyclohexane-water systems, miscibilities of constituent binary mixtures are poorly predicted from ternary system information when van der Waals volumes are used. Replacement of van der Waals volumes by molar volumes has little influence on the fit, but significant improvement is observed for the prediction of both binary miscibility properties and for distribution coefficients at infinite dilution in all the solvent-water systems considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. M. Grünbauer, T. Bultsma, and R. F. Rekker,Eur. J. Med. Chem. 17, 411 (1982).

    Google Scholar 

  2. H. J. M. Grünbauer and E. Tomlinson,Int. J. Pharm. 21, 61 (1984).

    Google Scholar 

  3. T. Tsuboka and T. Katayama,J. Chem. Eng. Japan 8, 181 (1975).

    Google Scholar 

  4. D. S. Abrams and J. M. Prausnitz,Am. Inst. Chem. Eng. Journal 21, 116 (1975).

    Google Scholar 

  5. S. Srebrenik and S. Cohen,J. Phys. Chem. 80, 996 (1976).

    Google Scholar 

  6. I. Kojima and S. S. Davis,Int. J. Pharm. 20, 247 (1984).

    Google Scholar 

  7. A. Bondi,J. Phys. Chem. 68, 441 (1964).

    Google Scholar 

  8. S. Terasawa, H. Itsuki, and S. Arakawa,J. Phys. Chem. 79, 2345 (1975).

    Google Scholar 

  9. J. T. Edward and P. G. Farrell,Can. J. Chem. 53, 2965 (1975).

    Google Scholar 

  10. F. Shahidi,J. Solution Chem. 12, 295 (1983).

    Google Scholar 

  11. J. M. Sørensen, T. Magnussen, P. Rasmussen, and A. Fredenslund,Fluid Phase Equilibria 3, 47 (1979).

    Google Scholar 

  12. R. F. Rekker,The Hydrophobic Fragmental Constant, (Elsevier, Amsterdam, 1977) and unpublished compilation of fragmental values in alkane-water systems.

    Google Scholar 

  13. J. A. Riddick and W. B. Bunger, ‘Organic Solvents’ inTechniques of Chemistry, Vol. 2, (Wiley Interscience, New York, 1970).

    Google Scholar 

  14. D. M. Marquardt,J. Soc. Ind. Appl. Math. 11, 431 (1963).

    Google Scholar 

  15. C. Hansch and A. Leo,Substituent Constants for Correlation Analysis in Chemistry and Biology, (Wiley, New York, 1979) and Supplements of the Pomona College Medicinal Chemistry Project Data File.

    Google Scholar 

  16. J. M. Sørensen and W. Arlt,Liquid-Liquid Equilibrium Data Collection, (Chemistry Data Series, DECHEMA, Frankfurt/Main, 1980), Vol. 5.

    Google Scholar 

  17. H. Hoiland and E. Vikingstad,Acta. Chem. Scand. A30, 182 (1976).

    Google Scholar 

  18. J. H. Vera, S. G. Sayegh, and G. A. Ratclif,Fluid Phase Equilibria 1, 113 (1977).

    Google Scholar 

  19. T. Magnussen, J. M. Sørensen, P. Rasmussen, and A. Fredenslund,Fluid Phase Equilibria 4, 151 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presentation to First International Symposium on Solubility Phenomena, University of Western Ontario, London, Ontario, August 21–23, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grünbauer, H.J.M., Tomlinson, E. Correlation and prediction of liquid-liquid distribution coefficients in aqueous systems using a modified Wilson model. J Solution Chem 14, 499–512 (1985). https://doi.org/10.1007/BF00646981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646981

Key words

Navigation