Skip to main content
Log in

A direct nitrogen-15 NMR study of praseodymium(III)-nitrate complex formation in aqueous solvent mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A direct, low-temperature nitrogen-15(15N) NMR technique has been applied to the study of inner-shell complex formation between praseodymium(III) and nitrate ion in aqueous solvent mixtures. In water-acetone mixtures at −95°C, ligand exchange is slow enough to permit the observation of15N NMR signals for uncomplexed and coordinated nitrate ion, but satisfactory resolution is obtained only by the addition of Freon-12 to these systems for study at −110 to −115°C. Four coordinated nitrate signals are generally observed and a very small signal for an additional complex, or an isomer of one of the others, appears at the highest nitrate concentrations. Signals for the mono-and dinitrato complexes are unambiguously identified, but with the exception of the trinitrato complex, several possibilities exist for the remaining peaks. To overcome excessive viscosity signal broadening, measurements in methanol and ethanol are possible only with praseodymium trifluoromethanesulfonate (triflate). Coordinated nitrate signals in aqueous and anhydrous methanol are observed only for the mono-and dinitrato species, and signal areas indicate a maximum of two moles of nitrate per Pr(III) are complexed. A third signal is evident in the ethanol solution spectra, and the presence of this higher complex was confirmed by area measurement of the fraction of bound nitrate. The extent of complex formation in these solvent systems is attributed to differences in the dielectric constant. A comparison of the complexing tendencies of Pr(III) to other ions studied by this NMR method suggests the possibility of a coordination number change across the lanthanide series. Preliminary15N NMR results for metal-ion complexes with the isothiocyanate ion are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lanthanide Probes in Life, Chemical and Earth Sciences, J.-C. G. Büzli and G. R. Choppin eds., (Elsevier, 1989).

  2. F. H. Spedding, M. J. Pikal, and B. O. Ayers,J. Phys. Chem. 70, 2440 (1966).

    Google Scholar 

  3. J. Padova,J. Phys. Chem. 71, 2347 (1967).

    Google Scholar 

  4. J. Reuben and D. Fiat,J. Chem. Phys. 51, 4909 (1969).

    Google Scholar 

  5. D. L. Pisaniello, L. Helm, P. Meir, and A. E. Merbach,J. Am. Chem. Soc. 105, 4528 (1983).

    Google Scholar 

  6. C. Cossy and A. E. Merbach,Pure and Appl. Chem. 60, 1785 (1988).

    Google Scholar 

  7. H. B. Silber, D. Bouler, and T. White,J. Phys. Chem. 82, 775 (1978).

    Google Scholar 

  8. L. Gutierrez, W. C. Mundy, and F. H. Spedding,J. Chem. Phys. 61, 1953 (1974).

    Google Scholar 

  9. H. Kanno and J. Hiraishi,J. Phys. Chem. 86, 1488 (1982).

    Google Scholar 

  10. H. Kanno and Y. akama,J. Phys. Chem. 91, 1263, (1987).

    Google Scholar 

  11. F. H. Spedding and J. A. Rard,J. Phys. Chem. 78, 1435 (1974).

    Google Scholar 

  12. A. Habenschuss and F. H. Spedding,J. Chem. Phys. 73, 442 (1980).

    Google Scholar 

  13. T. Yamaguchi, M. Nomura, H. Wakita, and H. Ohtaki,J. Chem. Phys. 89, 5153 (1988).

    Google Scholar 

  14. B. K. Annis, R.L. Hahn, and A. H. Narten,J. Chem. Phys. 82, 1086 (1985).

    Google Scholar 

  15. L. Helm and A. E. Merbach,Eur. J. Solid State Inorg. Chem. 28 (Suppl), 245 (1991).

    Google Scholar 

  16. Z. Libus, T. Sadowska, and W. Grzelak,J. Solution Chem. 13, 571 (1984).

    Google Scholar 

  17. J.-C. G. Büzli, J.-P. Metabanzoulou, P. Froidevaux, and L. Jin,Inorg. Chem. 29, 3875 (1990).

    Google Scholar 

  18. J.-C. G. Büzli and V. Kasparek,Inorg. Chim. Acta 182, 101 (1991).

    Google Scholar 

  19. A. Milicic-Tang and J.-C. G. Büzli,Inorg. Chim. Acta 192, 201 (1993).

    Google Scholar 

  20. G. Johansson and H. Wakita,Inorg. Chem. 24, 3047 (1985).

    Google Scholar 

  21. C. Cossy, L. Helm, and A. E. Merbach,Inorg. Chim. Acta 139, 147 (1987).

    Google Scholar 

  22. C. Cossy, L. Helm, and A. E. Merbach,Inorg. Chem. 27, 1973 (1988).

    Google Scholar 

  23. C. Cossy, A. C. Barnes, J. E. Enderby, and A. E. Merbach,J. Chem. Phys. 90, 3254 (1989).

    Google Scholar 

  24. H. A. Berman and T. R. Stengle,J. Phys. Chem. 70, 1001 (1975).

    Google Scholar 

  25. H. A. Berman, H. J. C. Yeh, and T. R. Stengle,J. Phys. Chem. 70, 2551 (1975).

    Google Scholar 

  26. Y. M. Cahen, P. R. Handy, E. T. Roach, and A. I. Popov,J. Phys. Chem. 79, 80 (1975).

    Google Scholar 

  27. B. Jezowska-Trzebiatowska, S. Ernst, J. Legendziewicz, and G. Oczko,Chem. Phys. Lett. 60, 19 (1978).

    Google Scholar 

  28. J.-C. G. Büzli, C. Mabillard, and J.-R. Yersin,Inorg. Chem. 21, 4214 (1982).

    Google Scholar 

  29. J.-C. G. Büzli and M. M. Vuckovic,Inorg. Chim. Acta 73, 52 (1982).

    Google Scholar 

  30. J.-C. G. Büzli and J.-R. Yersin,Inorg. Chim. Acta 94, 301 (1984).

    Google Scholar 

  31. H. B. Silber,Inorg. Chim. Acta 139, 33 (1987).

    Google Scholar 

  32. J. B. Lambert and W. Schilf,J. Am. Chem. Soc. 110, 6364 (1988).

    Google Scholar 

  33. L.-L. Soong, G. E. Leroi, and A. I. Popov,J. Solution Chem. 18, 561 (1989).

    Google Scholar 

  34. G. R. Choppin, D. E. Henrie, and K. Buijs,Inorg. Chem. 5, 1743 (1966).

    Google Scholar 

  35. L. S. Smith, Jr. and D. L. Wertz,J. Am. Chem. Soc. 97, 2365 (1975).

    Google Scholar 

  36. M. L. Steele and D. L. Wertz,J. Am. Chem. Soc. 98, 4424 (1976).

    Google Scholar 

  37. L. S. Smith Jr., D. C. McCain, and D. L. Wertz,J. Am. Chem. Soc. 98, 5125 (1976).

    Google Scholar 

  38. P. L. Rinaldi, S. A. Khan, G. R. Choppin, and G. C. Levy,J. Am. Chem. Soc. 101, 1350 (1979).

    Google Scholar 

  39. H. B. Silber and T. Mioduski,Inorg. Chem. 23, 1577 (1984).

    Google Scholar 

  40. G. R. Choppin and W. F. Strazik,Inorg. Chem. 4, 1250 (1965).

    Google Scholar 

  41. D. L. Nelson and D. E. Irish,J. Chem. Soc. Faraday Trans. I 69, 156 (1973).

    Google Scholar 

  42. H. B. Silber and M. S. Strozier,Inorg. Chim. Acta 128, 267 (1987).

    Google Scholar 

  43. H. B. Silber, R. Bakhashandehfar, L. A. Contreras, F. Gaizer, M. Gonsalves, and S. Ismail,Inorg. Chem. 29, 4473 (1990).

    Google Scholar 

  44. J.-C. Büzli, J.-R. Yersin, and C. Mabillard,Inorg. Chem. 21, 147 (1982).

    Google Scholar 

  45. J.-C. Büzli and J.-R. Yersin,Helv. Chim. Acta 65, 2498 (1982).

    Google Scholar 

  46. A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster,J. Chem. Phys. 47, 4951 (1967).

    Google Scholar 

  47. A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster,J. Chem. Phys. 48, 3705 (1968).

    Google Scholar 

  48. A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster,J. Chem. Phys. 50, 3624 (1969).

    Google Scholar 

  49. A. Fratiello, R. E. Lee, and R. E. Schuster,Inorg. Chem. 9, 391 (1970).

    Google Scholar 

  50. A. Fratiello, V. Kubo, S. Peak, B. Sanchez, and R. E. Schuster,Inorg. Chem. 10, 2552 (1971).

    Google Scholar 

  51. A. Fratiello, V. Kubo, and G. A. Vidulich,Inorg. Chem. 12, 2066 (1972).

    Google Scholar 

  52. A. Fratiello, V. Kubo-Anderson, T. Bolinger, C. Cordero, B. DeMerit, T. Flores, and R. D. Perrigan,J. Solution Chem. 18, 313 (1989).

    Google Scholar 

  53. A. Fratiello, V. Kubo-Anderson, T. Bolinger, C. Cordero, B. DeMerit, T. Flores, D. Matejka and R. D. Perrigan,J. Magn. Reson. 83, 358 (1989).

    Google Scholar 

  54. A. Fratiello, V. Kubo-Anderson, S. Azimi, T. Flores, E. Marinez, D. Matejka, R. D. Perrigan and B. Yao,J. Solution Chem. 20, 893 (1991).

    Google Scholar 

  55. A. Fratiello, V. Kubo-Anderson, S. Azimi, E. Marinez, D. Matejka, R. D. Perrigan, and B. Yao,J. Solution Chem. 21, 651 (1992).

    Google Scholar 

  56. A. Fratiello, V. Kubo-Anderson, S. Azimi, F. Laghaei, R. D. Perrigan, and F. Reyes,J. Solution Chem. 21, 1015 (1992).

    Google Scholar 

  57. S. W. Hall, L. R. Avens, D. K. Veirs, and B. D. Zwick, 203rd ACS Natl. Mtg. Abstracts, San Francisco, CA, 1992.

  58. A. Fratiello, V. Kubo-Anderson, S. Azimi, C. Fowler, E. Marinez, R. D. Perrigan, and S. Shayagon,Magn. Reson. Chem. 30, 280 (1992).

    Google Scholar 

  59. A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster,Inorg. Chem. 8, 69 (1969).

    Google Scholar 

  60. F. Tanaka, Y. Kawasake, and S. Yamashita,J. Chem. Soc. Faraday Trans. I 84, 1083 (1988).

    Google Scholar 

  61. G. E. Pake,Paramagnetic Resonance (W. A.Benjamin, New York, 1962).

    Google Scholar 

  62. A. Fratiello, V. Kubo-Anderson, E. Bolanos, D. Haigh, and R. D. Perrigan, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fratiello, A., Kubo-Anderson, V., Azimi, S. et al. A direct nitrogen-15 NMR study of praseodymium(III)-nitrate complex formation in aqueous solvent mixtures. J Solution Chem 22, 519–538 (1993). https://doi.org/10.1007/BF00646929

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646929

Key words

Navigation