Skip to main content
Log in

Thermodynamic and19F NMR studies of antimony trifluoride in water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities, specific heat capacities per unit volume and enthalpies of dilution at 25°C and osmotic coefficients at 37°C were measured for antimony trifluoride in water as functions of concentration. From the first three properties the apparent and partial molar volumes, heat capacities and relative enthalpies were derived. As well, pH measurements in water at 25°C and19F NMR spectra in water and methanol at 33°C were also carried out. All the thermodynamic properties together with the chemical shifts abruptly change in the very dilute concentration region (<0.1m) and, then, tend to a constant value. These trends have been rationalized through a simple model based on an equilibrium of dissociation of SbF3 into two ionic species. From the simulation of all the data it is derived that two concomitant equilibria are present in solution: the hydrolysis process of SbF3 which explains the pH values and the ionic dissociation of SbF3 which accounts for the19F NMR data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J. G. Ballard, T. Birchall, R. Fourcade, and G. Mascherpa,J. Chem. Soc. Dalton Trans. 2409 (1976) and refs. therein.

  2. J. F. Sawyer and R. J. Gillespie,Prog. Inorg. Chem. 34, 65 (1986).

    Google Scholar 

  3. A. J. Edwars,J. Chem. Soc. A, 2751 (1970).

  4. C. J. Adams and A. J. Downs,J. Chem. Soc. A, 1534 (1971).

    Google Scholar 

  5. A. M. Bond,J. Electrochem. Soc. Electrochem. Sci 117, 1145 (1970).

    Google Scholar 

  6. G. S. Kell,J. Chem. Ing. Data 12, 66 (1967).

    Google Scholar 

  7. J. E. Garrod and T. M. Herrington,J. Phys. Chem. 74, 363 (1970).

    Google Scholar 

  8. M. F. Stimson,Am. J. Phys. 23, 614 (1955).

    Google Scholar 

  9. T. Birchall and G. Dénès,Can. J. Chem. 62, 591 (1984).

    Google Scholar 

  10. J. E. Desnoyers, R. De Lisi, C. Ostiguy, and G. Perron, inSolution Chemistry of Surfactants, Vol. 1 K. L. Mittal, ed., (Plenum, New York, 1979).

    Google Scholar 

  11. R. De Lisi, C. Ostiguy, G. Perron, and J. E. Desnoyers,J. Colloid Interface Sci. 71, 147 (1979).

    Google Scholar 

  12. G. Alonzo, N. Bertazzi, and A. Maccotta,Inorg. Chim. Acta 62, 167 (1982).

    Google Scholar 

  13. J. D. Donaldson, J. T. Southern, and M. J. Tricker,J. Chem. Soc. Dalton Trans. 2637 (1972).

  14. J. Mason, ed.,Multinuclear NMR (Plenum, New York, 1987), p. 441.

    Google Scholar 

  15. G. Alonzo and F. Saiano, unpublished results.

  16. K. Schaumburg and C. Deverell,J. Am. Chem. Soc. 90, 2495 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lisi, R., Milioto, S., Alonzo, G. et al. Thermodynamic and19F NMR studies of antimony trifluoride in water. J Solution Chem 22, 489–505 (1993). https://doi.org/10.1007/BF00646927

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646927

Key words

Navigation