Journal of Solution Chemistry

, Volume 22, Issue 7, pp 601–623 | Cite as

Solubility behavior of titanium(IV) oxide in alkaline media at elevated temperatures

  • S. E. Ziemniak
  • M. E. Jones
  • K. E. S. Combs


A platinum-lined, flowing autoclave facility was used to investigate the solubility behavior of titanium dioxide (TiO2) in aqueous sodium phosphate, sodium hydroxide and ammonium hydroxide solutions between 17 and 288°. Baseline Ti(IV) solubilities were found to be on the order of one nanomolal, which were enhanced by the formation of anionic hydroxo- and phosphato-complexes. The measured solubility behavior was examined via a titanium(IV) ion hydrolysis/complexing reaction equilibria were obtained from a least squares analysis of the data. The existence of three new Ti(IV) ion complexes is reported for the first time: Ti(OH)4(HPO4)2−, Ti(OH)5(H2PO4)2− and Ti(OH)5(HPO4)3−. The triply-charged anionic complex was the dominant Ti(IV) species in concentrated, alkaline phosphate solutions at elevated temperatures. This complex is expected to exhibit C.N.=4 (i.e., Ti(OH)2OPO 4 3− ). A summary of thermochemical properties for species in the systems TiO2-H2O and TiO2-P2O5-H2O is also provided.

Key words

Titatium(IV) oxide rutile aqueous solutions metal ion hydrolysis phosphatocomplexing equilibrium constant thermodynamics pressurized water hydrothermal solutions corrosion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. J. Wagner and J. H. Duff,Proc. Amer. Power Conf. 44, 1130 (1982).Google Scholar
  2. 2.
    C. F. Baes and R. E. Mesmer,The Hydrolysis of Cations (Wiley-Interscience, New York, 1976).Google Scholar
  3. 3.
    V. P. Vasil'ev, P. N. Vorob'ev, and I. L. Khodakovskii,Russ. J. Inorg. Chem. 19, 1481 (1974).Google Scholar
  4. 4.
    S. E. Ziemniak, M. E. Jones, and K. E. S. Combs,J. Solution Chem. 18, 1133 (1989).Google Scholar
  5. 5.
    W. Stumm and J. J. Morgan,Aquatic Chemistry (Wiley-Interscience, New York, 1970).Google Scholar
  6. 6.
    F. H. Sweeton, R. E. Mesmer, and C. F. Baes,J. Solution Chem. 3, 191 (1974).Google Scholar
  7. 7.
    B. F. Hitch and R. E. Mesmer,J. Solution Chem. 5, 567 (1976).Google Scholar
  8. 8.
    R. E. Mesmer and C. F. Baes,J. Solution Chem. 3, 307 (1974).Google Scholar
  9. 9.
    N. C. Treloar, Central Electricity Research Laboratory Report RD/L/N 270/73 (1973). (See WAPD-TM-1302, March 1979).Google Scholar
  10. 10.
    W. L. Marshall and E. V. Jones,J. Phys. Chem. 70, 4028 (1966).Google Scholar
  11. 11.
    D. L. Marquardt,J. Soc. Indust. Appl. Math. 2, 431 (1963).Google Scholar
  12. 12.
    M. Pourbaix,Atlas of Electrochemical Equilibria in Aqueous Solutions (NACE, 1974).Google Scholar
  13. 13.
    O. Kubaschewski and C. B. Alcock,Metallurgical Thermochemistry (Pergamon, Oxford, 1983).Google Scholar
  14. 14.
    D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall,J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).Google Scholar
  15. 15.
    C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 86, 5390 (1964).Google Scholar
  16. 16.
    M. H. Abraham and Y. Marcus,J. Chem. Soc. Faraday Trans. I 82, 3255 (1986).Google Scholar
  17. 17.
    V. P. Vasil'ev, P. P. Vorob'ev, and V. I. Yashkova,Russ. J. Inorg. Chem. 31, 1076 (1986).Google Scholar
  18. 18.
    V. P. Vasil'ev and P. N. Vorob'ev,Russ. J. Phys. Chem. 43, 1605 (1969).Google Scholar
  19. 19.
    Y. Marcus,J. Chem. Soc. Faraday Trans. I 82, 233 (1986).Google Scholar
  20. 20.
    H. Einaga and Y. Komatsu,J. Inorg. Nucl. Chem. 43, 2449 (1981).Google Scholar
  21. 21.
    J. W. Larson, K. G. Zeeb, and L. G. Hepler,Can. J. Chem. 60, 2141 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • S. E. Ziemniak
    • 1
  • M. E. Jones
    • 1
  • K. E. S. Combs
    • 1
  1. 1.Knolls Atomic Power LaboratorySchenectady

Personalised recommendations