Skip to main content
Log in

On the role of reverse current on the hard X-ray production in solar flares and time-lags between high- and low-energy photons

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The evolution of energy and angular distributions of electrons has been studied accounting for the reverse current effect by combining analytically treated small angle multiple scatterings with large angle Monte-Carlo calculations. Reverse current and potential variations as function of column density have been computed. It is found that the reverse current decreases steeply with increase in electron energy. However, it becomes significant for low-energy electrons. By use of these distributions and bremsstrahlung crosssection, the X-ray energy spectrum has been calculated. The nature of the resulting X-ray spectrum integrated over all column depths is similar to the one without reverse current. The time-lag between high-and low-energy photon production has been calculated. It is found that there is a small difference between time-lags as function of observation angles. This fact can be used to test the validity of the beamed thick target model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, J. C.: 1971,Solar Phys. 25, 158.

    Google Scholar 

  • Brown, J. C.: 1972,Solar Phys. 26, 441.

    Google Scholar 

  • Brown, J. C.: 1974, in G. A. Newkirk (ed.), ‘Coronal Disturbances’,IAU Symp. 57, 395.

    Google Scholar 

  • Brown, J. C. and Melrose, D. B.: 1977,Solar Phys. 52, 117.

    Google Scholar 

  • Brown, J. C., Melrose, D. B., and Spicer, D. S.: 1979,Astrophys. J. 228, 592.

    Google Scholar 

  • Chubb, T. A.: 1970, in E. R. Dyer (ed.),Solar Terrestrial Physics, Part I, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Colgate, S. A.: 1978,Astrophys. J. 221, 1068.

    Google Scholar 

  • Cranell, C. J., Frost, K. J., Matzler, C., Ohki, K., and Saba, J. L.: 1978,Astrophys. J. 223, 620.

    Google Scholar 

  • Diakonov, S. V. and Somov, B. V.: 1988,Solar Flare Plasma Physics, Izmiran, Moscow.

    Google Scholar 

  • Elwert, G.: 1939,Ann. Phys. 34, 178.

    Google Scholar 

  • Elwert, G. and Haug, E.: 1971,Solar Phys. 20, 413.

    Google Scholar 

  • Emslie, A. G.: 1978,Astrophys. J. 224, 241.

    Google Scholar 

  • Emslie, A. G.: 1980,Astrophys. J. 235, 1055.

    Google Scholar 

  • Emslie, A. G. and Brown, J. C.: 1980,Astrophys. J. 237, 1015.

    Google Scholar 

  • Haug, E., Elwert, G., and Rausaria, R. R.: 1985,Astron. Astrophys. 146, 159.

    Google Scholar 

  • Heyvaerts, J.: 1981, in E. R. Priest (ed.),Solar Flare Magnetohydrodynamics, Gordon and Breach, New York, p. 429.

    Google Scholar 

  • Hoyng, P.: 1977,Astron. Astrophys. 55, 23.

    Google Scholar 

  • Hoyng, P., Brown, J. C., and Van Beek, H. E.: 1976,Solar Phys. 48, 197.

    Google Scholar 

  • Hoyng, P., Knight, J. W., and Spicer, D. S.: 1978,Solar Phys. 58, 139.

    Google Scholar 

  • Holt, S. S. and Cline, T. L.: 1968,Astrophys. J. 154, 1027.

    Google Scholar 

  • Holt, S. S. and Ramaty, R.: 1969,Solar Phys. 8, 119.

    Google Scholar 

  • Kahler, S. W.: 1975, in S. R. Kane (ed.), ‘Solar Gamma, K and EUV Radiation’,IAU Symp. 68, 211.

    Google Scholar 

  • Kane, S. R. and Anderson, K. A.: 1970,Astrophys. J. 162, 1003.

    Google Scholar 

  • Kane, S. R., Anderson, K. A., Evans, W. D., Klebesadel, R. W., and Laros, J. G.: 1980,Astrophys. J. 239, L85.

    Google Scholar 

  • Kiplinger, A. L., Dennis, B. R., Emslie, A. G., Frost, K. J., and Orig, L. E.: 1983,Astrophys. J. 265, L91.

    Google Scholar 

  • Knight, J. A. and Sturrock, P. A.: 1977,Astrophys. J. 218, 306.

    Google Scholar 

  • Koul, P. K., Rausaria, R. R., and Khose, P. N.: 1987,Solar Phys. 108, 739.

    Google Scholar 

  • Leach, J. and Petrosian, V.: 1981,Astrophys. J. 251, 781.

    Google Scholar 

  • Lin, R. P., Mewaldt, R. A., and Van Hollebeke, M. A. I.: 1982,Astrophys. J. 253, 949.

    Google Scholar 

  • Sauter, F.: 1934,Ann. Phys. 20, 404.

    Google Scholar 

  • Shapiro, V. D. and Shevchenko, V. J.: 1968,Soviet Phys. JETP 27, 635.

    Google Scholar 

  • Somov, B. V. and Syrovatskii, S. I.: 1976,Soviet Phys. Usp. 19, 813.

    Google Scholar 

  • Spicer, D. S., Tidman, D. A., and Hubbard, R. F.: 1979,Nucl. Fusion.

  • Spitzer, L.: 1962,Physics of Fully Ionized Plasma, John Wiley and Interscience Publ., New York.

    Google Scholar 

  • Syrovatskii, S. I. and Shmeleava, C. P.: 1972,Astron. Zh. 49, 334.

    Google Scholar 

  • Takakura, T. and Kai, K.: 1966,Publ. Astron. Soc. Japan 18, 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakaya, R., Chasti, S.A. & Rausaria, R.R. On the role of reverse current on the hard X-ray production in solar flares and time-lags between high- and low-energy photons. Astrophys Space Sci 195, 401–412 (1992). https://doi.org/10.1007/BF00646771

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646771

Keywords

Navigation