Journal of Solution Chemistry

, Volume 6, Issue 3, pp 203–216 | Cite as

The effects of aqueous solvent structure on the mutarotation kinetics of glucose

  • G. Livingstone
  • F. Franks
  • L. J. Aspinall
Article

Abstract

The mutarotation rates of glucose in aqueous mixtures of tetrahydrofuran andtert-butanol in the mole fraction (xi) range 0<xi<0.2 have been measured at 5° intervals in the range 5–35°C. The kinetic deuterium isotope effects have been determined for the same solvent compositions at 25 and 35°C. A statistical analysis of the Arrhenius plots indicates that the experimental errors, although small, are too large for the establishment of any compensation behavior between ΔH and ΔS which has often been claimed for reactions in mixed aqueous solvents. Nevertheless, it appears that ΔH exhibits a complex solvent composition dependence, and the solvent effects on the measured rate constants differ markedly from those found for aqueous solutions ofN,N-dimethyl-formamide and dimethyl sulfoxide. There is a deuterium isotope rate effect for solvent mixtures in which 0<xi<0.1, over and above the usually observed kinetic isotope effect. This additional effect decreases with rising temperature. The results are discussed in terms of competing water ordering effects in ternary mixtures containing water, a hydrophilic solute, and a hydrophobic solute.

Key words

Glucose kinetics mixed solvent kinetic isotope effect enthalpy of activation entropy of activation tetrahydrofuran tert-butanol mutarotation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Capon and R. B. Walker,J. Chem. Soc. Perkin Trans. 2, 1600 (1974).Google Scholar
  2. 2.
    H. H. Rowley and W. R. Hubbard,J. Am. Chem. Soc. 64, 1010 (1942).Google Scholar
  3. 3.
    N. M. Ballash and E. B. Robertson,Can. J. Chem. 51, 556 (1973).Google Scholar
  4. 4.
    R. P. Bell, J. P. Millington, and J. M. Pink,Proc. Roy. Soc. A303, 1 (1968).Google Scholar
  5. 5.
    F. Gram, J. A. Hveding, and A. Reine,Acta Chem. Scand. 27, 3616 (1973).Google Scholar
  6. 6.
    A. Reine, J. A. Hveding, O. Kjølberg, and O. Westbye,Acta Chem. Scand. B28, 690 (1974).Google Scholar
  7. 7.
    F. Franks, inWater: A Comprehensive Treatise, Vol. 4, F. Franks, ed. (Plenum Press, New York, 1975), Chap. 1.Google Scholar
  8. 8.
    R. E. Robertson,Progr. Phys. Org. Chem. 5, 213 (1967).Google Scholar
  9. 9.
    J. F. J. Engbersen and J. B. F. N. Engberts,J. Am. Chem. Soc. 97, 1563 (1975).Google Scholar
  10. 10.
    M. J. Tait, A. Suggett, F. Franks, S. Ablett, and P. A. Quickenden,J. Solution Chem. 1, 131 (1972).Google Scholar
  11. 11.
    F. Franks, D. S. Reid, and A. Suggett,J. Solution Chem. 2, 99 (1973).Google Scholar
  12. 12.
    G. Livingstone, Ph.D. Thesis, University of Bradford, 1974.Google Scholar
  13. 13.
    R. U. Lemieux and J. D. Stevens,Can. J. Chem. 44, 249 (1966).Google Scholar
  14. 14.
    N. C. Li, A. Kaganova, H. L. Crespi, and J. J. Katz,J. Am. Chem. Soc. 83, 3040 (1961).Google Scholar
  15. 15.
    W. Rosevaere,J. Am. Chem. Soc. 53, 1651 (1931).Google Scholar
  16. 16.
    S. Winstein and A. H. Fainberg,J. Am. Chem. Soc. 79, 5937 (1957).Google Scholar
  17. 17.
    R. R. Krug, W. G. Hunter, and R. A. Grieger,Nature 261, 567 (1976).Google Scholar
  18. 18.
    R. R. Krug, W. G. Hunter, and R. A. Grieger,J. Phys. Chem. 80, 2335 (1976).Google Scholar
  19. 19.
    F. Franks,Phil. Trans. Roy. Soc. (London) B, in press (1976).Google Scholar
  20. 20.
    F. H. Stillinger,J. Solution Chem. 2, 141 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • G. Livingstone
    • 1
  • F. Franks
    • 2
  • L. J. Aspinall
    • 2
  1. 1.Norwich City CollegeNorwichEngland
  2. 2.Unilever Research Laboratory Colworth/Welwyn, Colworth HouseBedfordEngland

Personalised recommendations