Skip to main content
Log in

NMR chemical shifts of xenon in mixed aprotic solvents: A probe of liquid structure

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The chemical shift of elemental xenon is extremely sensitive to the environment. In aprotic solvents, the presence of xenon has little effect on the solvent structure, and preferential solvation is not observed in any mixed solvent system. Consequently, xenon shifts can reveal the presence of short range order in certain liquids. Chemical shift data are presented for several model systems, including mixtures of different alkanes, alkanes with benzene, alkanes with acetone, and carbon tetrachloride with dimethylformamide (DMF). In certain cases, the xenon shift is strongly non-linear with composition. This effect arises from a specific interaction between the two solvents in the CCl4-DMF system, while it reflects short range liquid order in the acetone-alkane systems. This effect is also apparent in the deviation of the densities of the acetone-alkane mixtures from ideality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. W. Miller, N. V. Reo, A. J. M. Schoot Uiterkamp, D. P. Stengle, T. R. Stengle, and K. L. Williamson,Proc. Natl. Acad. Sci. USA 78, 4946 (1981).

    Google Scholar 

  2. J. A. Ripmeester and D. W. Davidson,J. Mol. Struct. 75, 67 (1981).

    Google Scholar 

  3. R. F. Tilton, Jr. and J. D. Kuntz, Jr.,Biochemistry 21, 6850 (1982).

    Google Scholar 

  4. F. H. A. Rummens,Van der Waals Forces and Shielding Effects. NMR Principles and Progress, Vol. 10, (Springer Verlag, New York, 1975).

    Google Scholar 

  5. T. R. Stengle, N. V. Reo, and K. L. Williamson,J. Phys. Chem. 85, 3772 (1981).

    Google Scholar 

  6. H. G. Hertz,Ber. Bunsenges. Phys. Chem. 77, 531 (1973)

    Google Scholar 

  7. 77, 688 (1973)

    Google Scholar 

  8. 78, 24 (1974).

    Google Scholar 

  9. T. R. Stengle, N. V. Reo, and K. L. Williamson,J. Phys. Chem. 88, 3225 (1984).

    Google Scholar 

  10. T. R. Stengle, S. M. Hosseini,J. Solution Chem. 13, 779 (1984).

    Google Scholar 

  11. L. S. Frankel, C. H. Langford, and T. R. Stengle,J. Phys. Chem. 74, 1376 (1970).

    Google Scholar 

  12. A. K. Jameson, C. J. Jameson, and H. S. Gutowsky,J. Chem. Phys. 53, 2310 (1970).

    Google Scholar 

  13. S. Mohanty and H. J. Bernstein,J. Chem. Phys. 54, 2254 (1971).

    Google Scholar 

  14. E. W. Washburn,International Critical Tables, Vol. III, (McGraw-Hill, New York, 1928).

    Google Scholar 

  15. F. H. A. Rummens,J. Chim. Phys. 72, 448 (1975).

    Google Scholar 

  16. N. Muller,J. Maqn. Reson. 28, 203 (1977).

    Google Scholar 

  17. J. H. Hildebrand, J. M. Prausnitz, and R. L. Scott,Regular and Related Solutions, (van Nostrand Reinhold, New York, 1970), p. 187.

    Google Scholar 

  18. J. R. Goates,Trans. Faraday Soc. 62, 1511 (1966).

    Google Scholar 

  19. B. M. Braun and M. Holz,J. Solution Chem. 12, 685 (1983).

    Google Scholar 

  20. N. Muller,J. Maqn. Reson. 25, 111 (1977).

    Google Scholar 

  21. N. Muller, private communication.

  22. P. M. Rentzepis and D. C. Douglass,Nature 293, 165 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stengle, T.R., Hosseini, S.M. & Williamson, K.L. NMR chemical shifts of xenon in mixed aprotic solvents: A probe of liquid structure. J Solution Chem 15, 777–790 (1986). https://doi.org/10.1007/BF00646718

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646718

Key words

Navigation