Skip to main content
Log in

Pitzer-Debye-Hückel limiting slopes for water from 0 to 350°C and from saturation to 1 kbar

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Using internationally recognized critical evaluations for the dielectric constant of water by Uematsu and Franck and the thermodynamic surface of water by Haar, Gallagher, and Kell, the Bureau of Mines presents values for the Pitzer-Debye-Hückel limiting slopes for osmotic coefficients, apparent molal enthalpies, apparent molal heat capacities, apparent molal volumes, molal compressibilities, and apparent molal expansivities from 0 to 350°C and from saturation to 1 kbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ananthaswamy and G. Atkinson,J. Chem. Eng. Data 29, 81 (1984).

    Google Scholar 

  2. D. J. Bradley and K. S. Pitzer,J. Phys. Chem. 83, 1599 (1979).

    Google Scholar 

  3. P. S. Z. Rogers and K. S. Pitzer,J. Phys. Chem. 85, 2886 (1981).

    Google Scholar 

  4. L. F. Silvester and K. S. Pitzer,J. Phys. Chem. 81, 1822 (1977).

    Google Scholar 

  5. C. E. Harvie and J. H. Weare,Geochim. Cosmochim. Acta 44, 981 (1980).

    Google Scholar 

  6. J. Ananthaswamy and G. Atkinson,J. Solution Chem. 11, 509 (1982)

    Google Scholar 

  7. R. N. Roy, J. J. Gibbons, J. K. Trower, and G. A. Lee,J. Solution Chem 9, 535, (1980).

    Google Scholar 

  8. C. W. Clarke and D. N. Glew,J. Chem. Soc., Faraday Trans. 76, 1911 (1980).

    Google Scholar 

  9. L. Haar, J. Gallagher, and G. S. Kell, ‘Water and Steam’ inProceedings of the 9th International Conference on the Properties of Steam, J. Straub and K. Scheffler, eds., (Pergamon Press, Oxford, 1980).

    Google Scholar 

  10. H. C. Helgeson and D. H. Kirkham,Am. J. Sci. 274, 1199 (1974).

    Google Scholar 

  11. I. L. Khodakovsky and V. A. Dorofeyeva,Geokhimiya 8, 1174 (1981).

    Google Scholar 

  12. I. L. Khodakovsky, Doctor of Science Thesis, Academy of Sciences, U.S.S.R., March (1975).

  13. M. Uematsu and E. V. Franck,J. Phys. Chem. Ref. Data 9, 1291 (1980).

    Google Scholar 

  14. E. Cohn,Ann. Phys. (Wied.) 45, 370 (1892).

    Google Scholar 

  15. F. Heerwagen,Ann. Phys. (Wied.) 49, 272 (1893).

    Google Scholar 

  16. F. Ratz,Z. Phys. Chem. 19, 94 (1896).

    Google Scholar 

  17. W. D. Coolidge,Ann. Phys. (Wied.) 69, 125 (1899).

    Google Scholar 

  18. G. Falkenberg,Ann. Phys. 61, 145 (1920).

    Google Scholar 

  19. W. F. Powers and T. C. Hubbard,Phys. Rev. 15, 535 (1920).

    Google Scholar 

  20. M. M. Sauzin,Compt. Rend 171, 164 (1920).

    Google Scholar 

  21. M. Jezewski,Poln. Akad. Ber. 88, (1920).

  22. R. T. Lattey,Phil. Mag. 41, 829 (1921).

    Google Scholar 

  23. M. Jezewski,J. Phys. Radium 3, 293 (1922).

    Google Scholar 

  24. A. P. Carman,Phys. Rev. 24, 396 (1924).

    Google Scholar 

  25. L. Kouckel,Ann. Phys. 77, 417 (1925).

    Google Scholar 

  26. Y. Matsuike,Sci. Repts. Tohoku Imp. Univ. 14, 445 (1925).

    Google Scholar 

  27. S. Kyropouos,Z. Phys. 40, 507 (1926).

    Google Scholar 

  28. A. Deubner,Ann. Phys. 84, 429 (1927).

    Google Scholar 

  29. A. Astin,Phys. Rev. 34, 300 (1929).

    Google Scholar 

  30. A. C. Cuthbertson and O. Maass,J. Amer. Chem. Soc. 52, 483 (1930).

    Google Scholar 

  31. F. H. Drake, G. W. Pierce, and M. T. Dow,Phys. Rev. 35, 613 (1930).

    Google Scholar 

  32. G. Devoto,Gazz. Z. Chim. Ital. 60, 208 (1930).

    Google Scholar 

  33. J. Wyman,Phys. Rev. 35, 623 (1930).

    Google Scholar 

  34. E. P. Linton and O. Maass,J. Amer. Chem. Soc. 53, 957 (1931).

    Google Scholar 

  35. R. T. Lattey, O. Gatty, and W. G. Davies,Phil. Mag. 12, 1019 (1931).

    Google Scholar 

  36. G. Akerlof,J. Amer. Chem. Soc. 54, 4125 (1932).

    Google Scholar 

  37. E. P. Linton, and O. Maass,J. Amer. Chem. Soc. 54, 1863 (1932).

    Google Scholar 

  38. P. S. Albright,J. Amer. Chem. Soc. 59, 2098 (1937).

    Google Scholar 

  39. J. Wyman and E. N. Ingalls,J. Amer. Chem. Soc. 60, 1182 (1938).

    Google Scholar 

  40. T. T. Jones and R. M. Davies,Phil. Mag. 28, 307 (1939).

    Google Scholar 

  41. P. S. Albright and L. J. Gosting,J. Amer. Chem. Soc. 68, 1061 (1946).

    Google Scholar 

  42. W. L. Lees, Ph.D. Thesis, Dept. of Physics, Harvard University, (1949).

  43. G. C. Akerlof and H. I. Oshry,J. Amer. Chem. Soc. 72, 2844 (1950).

    Google Scholar 

  44. F. E. Harris, E. W. Haycock, and B. J. Alder,J. Phys. Chem. 57, 978 (1953).

    Google Scholar 

  45. F. E. Harris, E. W. Haycock, and B. J. Alder,J. Chem. Phys. 21, 1943 (1953).

    Google Scholar 

  46. J. K. Fogo, S. W. Benson, and C. S. Copeland,J. Chem. Phys. 22, 209 (1954).

    Google Scholar 

  47. B. K. P. Scaife,Proc. Phys. Soc. 68, 790 (1955).

    Google Scholar 

  48. C. G. Malmberg, and A. A. Maryott,J Res. Natl. Bureau Std. 56, 1 (1956).

    Google Scholar 

  49. B. B. Owen, R. C. Miller, C. E. Milner, and H. L. Cogan,J. Phys. Chem. 65, 2065 (1961).

    Google Scholar 

  50. G. A. Vidulich and R. L. Kay,J. Phys. Chem. 66, 383 (1962).

    Google Scholar 

  51. T. E. Gier and H. S. Young,High Pressure Physics and Chemistry, Vol. 1, R. S. Bradley, ed., (Academic Press, London, 1963), p. 215.

    Google Scholar 

  52. E. W. Rusche and W. B. Good,J. Chem. Phys. 45, 4667 (1966).

    Google Scholar 

  53. G. A. Vidulich, D. F. Evans, and R. L. Kay,J. Phys. Chem. 71, 656 (1967).

    Google Scholar 

  54. M. G. Koslov, Yu. A. Bogomalov, Yu. P. Michurov, E. P. Serov, N. M. Kuronov, O. K. Smirnov, and M. N. Kemel'man,Teploenergetika 14, 78 (1967).

    Google Scholar 

  55. L. A. Dunn and R. H. Stokes,Trans. Faraday Soc. 65, 2906 (1969).

    Google Scholar 

  56. R. L. Kay and G. A. Vidulich,J. Phys. Chem. 73, 445 (1969).

    Google Scholar 

  57. E. Schadow and R. Steiner,Z. Phys. Chem. N.F. 66, 105 (1969).

    Google Scholar 

  58. K. Heger, Dissertation, University of Karlsruhe, West Germany (1969).

  59. E. P. Svistunov, B. P. Golubev, and S. N. Smirnov,Teploenergetika 21, 69 (1974).

    Google Scholar 

  60. B. P. Golubev, Yu. M. Luksahov, S. N. Smirnov, K. B. Komissarov, E. P. Svistunov, and G. Yu. Mazina,Teploenergetika 21, 83 (1974).

    Google Scholar 

  61. V. A. Bychkov, S. A. Fedulov, and N. V. Mirhailov,Zhur. FiZ. Khim. 48, 447 (1974).

    Google Scholar 

  62. K. R. Srinivasan and R. L. Kay,J. Chem. Phys. 60, 3645 (1974).

    Google Scholar 

  63. M. Yu. Lukashov, B. P. Golubev, and F. B. Ripol-Saragosy,Teploenergetika 22, 79 (1975).

    Google Scholar 

  64. L. Haar and J. S. Gallagher, ‘Estimate of Accuracy for the HGK Helmholtz Function’ inReport to International Association for the Properties of Steam, (Jan. 1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, R.P., Staples, B.R. Pitzer-Debye-Hückel limiting slopes for water from 0 to 350°C and from saturation to 1 kbar. J Solution Chem 15, 749–764 (1986). https://doi.org/10.1007/BF00646716

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646716

Key words

Navigation