Astrophysics and Space Science

, Volume 176, Issue 2, pp 191–215 | Cite as

Electrical conductivity of neutron star cores in the presence of a magnetic field

II. A free-particle model of npe∑-matter
  • D. G. Yakovlev
  • D. A. Shalybkov
Article

Abstract

General theory of electrical conductivity of a multicomponent mixture of degenerate fermions in a magnetic fieldB, developed in the preceding article (this volume), is applied to a matter in neutron star interiors at densities ρ≳ρ0, where ρ0 = 2.8×1014 g cm−3 is the standard nuclear matter density. A model of free-particle mixture ofn, p, e is used, with account for appearance of ∑-hyperons at ρ>ρ c , where ρ c ≈4ρ0. The electric resistivities along and acrossB, ℛ and ℛ, and the Hall resistivity ℛ H are calculated and fitted by simple analytical formulae at ρ≤ρ c and ρ>ρ c for the cases of normal or superfluid neutrons provided other particles are normal. Charge transport alongB is produced by electrons, due to their Coulombic collisions with other charged particles; ℛ is independent ofB and almost independent of the neutron superfluidity. Charge transport acrossB at largeB may be essentially determined by other charged particles. If ρ≤ρ c , one has ℛ = ℛ[1 + (B/B0)2] for the normal neutrons, and ℛ for the superfluid neutrons, while ℛ H = ℛB/B e for both cases. HereB e ∼109T 8 2 G,B0∼1011T 8 2 G, andT8 is temperature in units of 108 K. Accordingly for the normal neutrons atBB0, the transverse resistivity ℛ suffers an enhancement, ℛ1/4 ≪ ℛ1. When ρ≳5ρ0 andB varies from 0 toBB p ∞ 1013T 8 2 G, ℛ increases by a factor of about 103–104 and ℛ H changes sign. WhenBB p , ℛ remains constant for the superfluid neutrons, and ℛ H B2 for the normal neutrons, while ℛ H B for any neutron state. Strong dependence of resistivity onB, T, and ρ may affect evolution of magnetic fields in neutron star cores. In particular, the enhancement of ℛ at highB may noticeably speed up the Ohmic decay of those electric currents which are perpendicular toB.

Keywords

Electrical Conductivity Charged Particle Neutron Star Nuclear Matter Charge Transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahiezer, A. I. and Berestetskii, V. B.: 1965,Quantum Electrodynamics, Interscience, New York.Google Scholar
  2. Baym, G., Pethick, C., and Pines, D.: 1969,Nature 224, 673.Google Scholar
  3. Bersbach, A. J., Mischke, R. E., and Devlin, T. J.: 1976,Phys. Rev. D13, 535.Google Scholar
  4. Chapman, S. and Cowling, T. G.: 1952,The Matematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge.Google Scholar
  5. Haensel, P.: 1987,Prog. Theor. Phys. Suppl. 91, 268.Google Scholar
  6. Haensel, P. and Jerzak, A. J.: 1989,Acta Physica Polonica B20, 141.Google Scholar
  7. Haensel, P., Urpin, V. A., and Yakovlev, D. G.: 1990,Astron. Astrophys. 229, 133.Google Scholar
  8. Landau, L. D., Lifshitz, E. M., and Pitaevskii, L. P.: 1984,Electrodynamics of Continuous Media, Pergamon Press, Oxford.Google Scholar
  9. Maxwell, O. V.: 1979,Astrophys. J. 231, 201.Google Scholar
  10. Scanlon, J. P., Stafford, G. H., Thresher, J. J., and Bowen, P. H.: 1963,Nucl. Phys. 41, 401.Google Scholar
  11. Shapiro, S. L. and Teukolsky, S. A.: 1983,Black Holes, White Dwarfs, and Neutron Stars, Wiley-Interscience, New York.Google Scholar
  12. Yakovlev, D. G.: 1984,Astrophys. Space Sci. 98, 37.Google Scholar
  13. Yakovlev, D. G. and Shalybkov, D. A.: 1990,Pisma Astron. Zh. (Soviet Astron. Letters) 16, 202.Google Scholar
  14. Yakovlev, D. G. and Shalybkov, D. A.: 1991,Astrophys. Space Sci. 176, 171 (Paper I).Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • D. G. Yakovlev
    • 1
  • D. A. Shalybkov
    • 1
  1. 1.A. F. Ioffe Institute of Physics and TechnologyLeningradU.S.S.R.

Personalised recommendations