Skip to main content
Log in

Ternary mutual diffusion coefficients of ZnCl2−KCl−H2O at 25°C by Rayleigh interferometry

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Mutual diffusion coefficients and densities were measured for aqueous ZnCl2−KCl mixtures at 25° by using free-diffusion Rayleigh interferometry and pycnometry, respectively. The ZnCl2 concentrations were fixed at 1.5 mol-dm−3, whereas those of KCl were 0.5, 1.25, 2.0, or 4.0 mol-dm−3. This corresponds to a half charged zinc-chlorine storage battery at various suporting electrolyte concentrations. The main-term coefficient of ZnCl2 only varies by 10% with KCl concentration, whereas that of KCl varies by about 22%. The ZnCl2 cross-term coefficient remains small and positive; in contrast the KCl cross-term coefficient goes through a maximum and is negative at high and low KCl concentrations. At KCl concentrations of 0.5 and 4.0 mol-dm−3, solutions with the KCl Δc≈0 are statically and dynamically (diffusively) unstable at the top and bottom of the boundary. Evaluation of the parameters of the non-linear least-squares solution to the diffusion equation is difficult for the 1.25 mol-dm−3 KCl case, since this system has nearly equal eigenvalues in its diffusion coefficient matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Energy Development Associates, EPRI EM-1417, Electric Power Research Institute (Palo Alto, May 1980).

    Google Scholar 

  2. J.A. Rard and D.G. Miller,J. Phys. Chem. 91, 4614 (1987);92, 6133 (1988).

    Google Scholar 

  3. J.G. Albright, R. Mathew, D.G. Miller, and J.A. Rard,J. Phys. Chem. 93, 2176, (1989).

    Google Scholar 

  4. L. Paduano, R. Mathew, J.G. Albright, D.G. Miller, and J.A. Rard,J. Phys. Chem. 93, 4366 (1989).

    Google Scholar 

  5. R. Mathew, L. Paduano, J.G. Albright, D.G. Miller, and J.A. Rard,J. Phys. Chem. 93, 4370 (1989).

    Google Scholar 

  6. A. Agnew and R. Paterson,J. Chem. Soc. Faraday Trans. I. 74, 2896 (1978).

    Google Scholar 

  7. H. Weingärtner, K.J. Müller, H.G. Hertz, A.V.J. Edge, and R. Mills,J. Phys. Chem. 88, 2173, (1984).

    Google Scholar 

  8. J.A. Rard and D.G. Miller,Z. Phys. Chem. (Neue Folge) 142, 141 (1984).

    Google Scholar 

  9. D.G. Miller, A.W. Ting, and J.A. Rard,J. Electrochem. Soc. 135, 896 (1988).

    Google Scholar 

  10. D.G. Leaist,Ber. Bunsenges. Phys. Chem. 90, 797 (1986).

    Google Scholar 

  11. D.G. Miller, J.A. Rard, L.B. Eppstein, and J.G. Albright,J. Phys. Chem. 88, 5793 (1984): see the supplementary material for the alignment procedure.

    Google Scholar 

  12. J.A. Rard and D.G. Miller,J. Solution Chem. 8, 701 (1979).

    Google Scholar 

  13. J.A. Rard and D.G. Miller,J. Chem. Thermodyn. 21, 463 (1989).

    Google Scholar 

  14. P.J. Dunlop and L.J. Gosting,J. Phys. Chem. 63, 86 (1959).

    Google Scholar 

  15. J.A. Rard and D.G. Miller,J. Chem. Eng. Data 29, 151 (1984).

    Google Scholar 

  16. D.G. Miller,J. Phys. Chem. 71, 616 (1967).

    Google Scholar 

  17. D.G. Miller,J. Solution Chem. 10, 831 (1981).

    Google Scholar 

  18. D.G. Miller, A.W. Ting, J.A. Rard, and L.B. Eppstein,Geochim. Cosmochim. Acta 50, 2397 (1986).

    Google Scholar 

  19. H. Fujita and L.J. Gosting,J. Am. Chem. Soc. 78, 1099 (1956).

    Google Scholar 

  20. H.L. Toor,AIChE J. 10, 448, 460 (1956).

    Google Scholar 

  21. D. G. Miller, unpublished derivations.

  22. D.G. Miller and V. Vitagliano,J. Phys. Chem. 90, 1706 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rard, J.A., Miller, D.G. Ternary mutual diffusion coefficients of ZnCl2−KCl−H2O at 25°C by Rayleigh interferometry. J Solution Chem 19, 129–148 (1990). https://doi.org/10.1007/BF00646608

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646608

Key words

Navigation