Journal of Solution Chemistry

, Volume 19, Issue 2, pp 97–128 | Cite as

Volumes and compressibilities of pentanol in aqueous dodecyltrimethylammonium bromide solutions at 15, 25 and 35°C

  • R. De Lisi
  • S. Milioto
  • R. E. Verrall
Article

Abstract

Ultrasonic velocities and densities of the water-dodecyltrimethylammonium bromide (DTAB)-pentanol (PentOH) ternary system were measured at 15, 25 and 35°C as a function of the surfactant and alcohol concentrations. The apparent molar volumes and isentropic compressibilities of PentOH were calculated. The standard partial molar volumes increase with surfactant concentration continuously whereas the standard partial molar isentropic compressibilities show sharp changes in slope at about 0.25 mol-kg−1 DTAB, which can be ascribed to a micellar structural transition. The volume data for alcohol in micellar solutions were treated by a model reported for the distribution of polar additives between aqueous and micellar phases. In the application of the model to compressibility, the contributions due to the pressure effect on the shift of both the micellization equilibrium and the alcohol distribution constant cannot be neglected. This is in contrast to what is found in the case of heat capacity. The distribution constant and the partial molar volumes and compressibilities of PentOH in the micellar phase have been derived by linear regression. Also, the apparent molar volumes and isentropic compressibilities of DTAB in water-pentanol mixed solvents at fixed composition have been calculated. These properties as a function of the surfactant concentration show maxima depending on the temperature and the mixed solvent composition. The decrease beyond the maximum can be attributed to the extraction of PentOH from the aqueous into the micellar phase, where its concentration tends to zero with the progressive increase of the surfactant concentration. As a consequence, by increasing the surfactant concentration, the apparent molar properties of the surfactant in the mixed solvent shifts towards the value in water.

Key words

Pentanol dodecyltrimethylammonium bromide apparent molar volume and isentropic compressibilities pentanol-micelle binding constant post-micellar transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. De Lisi, V. Turco Liveri, M. Castagnolo, and A. Inglese,J. Solution Chem. 15, 23 (1986).Google Scholar
  2. 2.
    R. De Lisi, S. Milioto, M. Castagnolo, and A. Inglese,J. Solution Chem 16, 373 (1987).Google Scholar
  3. 3.
    R. De Lisi, S. Milioto, and V. Turco Liveri,J. Colloid Interface Sci.,117, 64 (1987).Google Scholar
  4. 4.
    R. De Lisi and S. Milioto,J. Solution Chem.,16, 676 (1987).Google Scholar
  5. 5.
    M. Alauddin and R. E. Verrall,J. Phys. Chem. 88, 5725 (1984).Google Scholar
  6. 6.
    P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).Google Scholar
  7. 7.
    M. Iqbal and R. E. Verrall,J. Phys. Chem. 91, 967 (1987).Google Scholar
  8. 8.
    W. McMillan and J. Mayers,J. Phys. Chem. 13, 176 (1945).Google Scholar
  9. 9.
    R. De Lisi, S. Milioto, and R. E. Verrall,J. Solution Chem. (submitted).Google Scholar
  10. 10.
    R. De Lisi and S. Milioto,Colloids and Surfaces 35, 309 (1989).Google Scholar
  11. 11.
    F. Quirion and J.E. Desnoyers,J. Colloid Interface Sci. 112, 565 (1986).Google Scholar
  12. 12.
    F. Quirion and J.E. Desnoyers,J. Colloid Interface Sci. 115, 176 (1987).Google Scholar
  13. 13.
    G. Roux-Desgranges, A.H. Roux, J.-P. Grolier, and A. Viallard,J. Solution Chem. 11, 357 (1982).Google Scholar
  14. 14.
    G. Roux-Desgranges, A.H. Roux, and A. Viallard,J. Chim. Phys. 82, 441 (1985).Google Scholar
  15. 15.
    V. Majer, A.H. Roux, G. Roux-Desgranges, and A. Viallard,Can. J. Chem. 61, 139 (1983).Google Scholar
  16. 16.
    R. De Lisi, S. Milioto, and R. Triolo,J. Solution Chem. 17, 673 (1988).Google Scholar
  17. 17.
    C. Treiner,J. Colloid Interface Sci. 93, 33 (1983).Google Scholar
  18. 18.
    R. Zana, S. Yiv, C. Strazielle, and P. Lianos,J. Colloid Interface Sci. 80, 208 (1981).Google Scholar
  19. 19.
    R. De Lisi, C. Genova, R. Testa, and V. Turco Liveri,J. Solution Chem. 13, 121 (1984).Google Scholar
  20. 20.
    R.F. Tuddenham and A.E. Alexander,J. Phys. Chem. 66, 1839 (1962).Google Scholar
  21. 21.
    R. De Lisi and S. Milioto,J. Solution Chem. 17, 245 (1988).Google Scholar
  22. 22.
    E. Vikingstad,J. Colloid Interface Sci. 72, 75 (1979).Google Scholar
  23. 23.
    E. Vikingstad and H. Hoiland,J. Colloid Interface Sci. 64, 510 (1978).Google Scholar
  24. 24.
    A.H. Roux, D. Hetú, G. Perron, and J.E. Desnoyers,J. Solution Chem. 13, 1 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • R. De Lisi
    • 1
  • S. Milioto
    • 1
  • R. E. Verrall
    • 2
  1. 1.Department of Physical ChemistryUniversity of PalermoPalermoItaly
  2. 2.Department of ChemistryUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations