Skip to main content
Log in

Apparent molar heat capacities and volumes, van der Waals volumes and accessible surface areas of alkylated derivatives of cytosine and uracil in aqueous solutions at 25°C.

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities and specific heat capacities of aqueous solutions: 1,3,5,6-tetramethyluracil, 1,6-dimethyl-3-ethyluracil, 1,6-dimethyl-3-propyluracil, 1,6-dimethyl-3-butyluracil, 1,N4-trimethylcytosine, 1,N4-dimethyl-5-ethylcytosine, 1,N4 dimethyl-5-propylcytosine, 1,N4-dimethyl-5-butylcytosine were determined using flow calorimetry and flow densimetry at 25°C. Apparent molar volumes and heat capacities, van der Waals volumes and accessible surface areas were determined. It was stated that for alkylcytosines and alkyluracils partial molar volumes and heat capacities correlate linearly with the number of substituted methylene groups-CH2-as well as with the van der Waals volumes and accessible surface areas of the compounds studied; for cyclooligouracils the cyclization effect was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Blackburn and M. J. Gait,Nucleic Acids in Chemistry and Biology (IRL Press, Oxford University Press, Oxford, New York, Tokyo, 1990).

    Google Scholar 

  2. H. Vogel, ed.,Nucleic Acid-Protein Recognition (Academic Press, New York, 1977).

    Google Scholar 

  3. J. D. Engel and P. H. von Hippel,J. Biol. Chem. 253, 927 (1978).

    Google Scholar 

  4. E. Plesiewicz, E. Stepień, K. Bolewska, and K. L. Wierzchowski,Biophys. Chem. 4, 131 (1976).

    Google Scholar 

  5. P. O. P. Tso, ed.,Basic Principles of Nucleic Acid Chemistry, Vol 1, (Academic Press, New York, 1974) p. 537.

    Google Scholar 

  6. J. Szemińska, W. Zielenkiewicz, and K. L. Wierzchowski,Biophys. Chem. 10, 409 (1979).

    Google Scholar 

  7. J. P. Grolier, A. H. Roux, G. Roux-Desgranges I. Tomaszkiewicz, and W. Zielenkiewicz,Thermochim. Acta 176, 141 (1991).

    Google Scholar 

  8. W. Zielenkiewicz, A. Zielenkiewicz, J. P. Grolier, A. H. Roux, and G. Roux-Desgranges,J. Solution Chem. 21 1 (1992).

    Google Scholar 

  9. A. Zielenkiewicz, E. Plesiewicz, K. L. Wierzchowski, and W. ZielenkiewiczBiophys. Chem. 10, 415 (1979).

    Google Scholar 

  10. A. B. Teplitsky, I. K. Yanson, O. T. Glukhova, A. Zielenkiewicz, and W. Zielenkiewicz,Biophys. Chem. 11, 17 (1980).

    Google Scholar 

  11. A. B. Teplitsky, O. T. Glukhova, L. F. Sukhodub, K. J. Yanson, A. Zielenkiewicz, W. Zielenkiewicz, J. Kosiński, and K. L. WierzchowskiBiophys. Chem. 15, 139 (1982).

    Google Scholar 

  12. A. Zielenkiewicz, W. Zielenkiewicz, L. F. Sukhodub, O. T. Glukhova, A. B. Teplitsky, and K. L. Wierzchowski,J. Solution Chem. 13, 757 (1984).

    Google Scholar 

  13. A. Zielenkiewicz, W. Zielenkiewicz, L. F. Sukhodub, O. T. Glukhova, and K. L. Wierzchowski,Acta Biochimica Polonica 34, 157 (1987).

    Google Scholar 

  14. S. J. Gill and I. Wadsö,Proc. Nat. Acad. Sci. (U.S.) 73, 2955 (1976).

    Google Scholar 

  15. N. Muller,Acc. Chem. Res. 23, 23 (1990).

    Google Scholar 

  16. S. F. Dec and S. J. Gill,J. Solution Chem. 14, 827 (1981).

    Google Scholar 

  17. R. H. Herman,J. Phys. Chem. 76, 2754 (1972).

    Google Scholar 

  18. S. H. Yalkowsky and S. Banarjee,Aqueous Solubility (Marcel Dekker, New York, 1992).

    Google Scholar 

  19. P. L. Privalov and G. I. Makhatadze,J. Molecular Biol. 213, 385 (1990).

    Google Scholar 

  20. C. Chothia,Nature 254, 304 (1975).

    Google Scholar 

  21. A. E. Eriksson, W. A. Baase, X. J. Zhang, D. W. Heinz, M. Blaber, E. P. Baldwin, and B. W. Matthews,Science 255, 178 (1992).

    Google Scholar 

  22. C. Chothia and J. Janin,Nature 256, 705 (1975).

    Google Scholar 

  23. M. Karpusas, W. A. Baase, M. Matsumura, and B. W. Matthews,Proc. Natl. Acd. Sci. (U.S.) 86, 8237 (1989).

    Google Scholar 

  24. P. Picker, P. A. Leduc, P. P. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  25. I. E. Desnoyers, C. de Visser, G. Perron, and P. Picker,J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  26. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  27. D. Voet and A. Rod,The Crystal Structure of Purines, Pyrimidines, and Their Intermolecular Complexes in Progress in Nucleic Acid Research and Molecular Biology, Vol. 10, J. N. Davidson and W. E. Cohn, eds., (Academic Press, New York, 1970).

    Google Scholar 

  28. F. M. Allen, A. Kenaad, and R. Raylor,Acc. Chem. Res. 16, 146 (1983).

    Google Scholar 

  29. R. Lavery and B. Pullman,Int. J. Quant. Chem. 20, 251 (1981).

    Google Scholar 

  30. E. Silla, I. Tunon, and J. L. Pascual-Ahuir,J. Comp. Chem. 12, 1877 (1991).

    Google Scholar 

  31. N. Nichols, R. Skold, C. Spink, I. Suurkuusk, and I. Wadsö,J. Chem. Thermodyn. 8, 1081 (1976).

    Google Scholar 

  32. N. Kishore, R. Bhat, and I. C. Ahluwalia,Biophys. Chem. 33, 227 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zielenkiewicz, A., Roux-Desgranges, G., Roux, A.H. et al. Apparent molar heat capacities and volumes, van der Waals volumes and accessible surface areas of alkylated derivatives of cytosine and uracil in aqueous solutions at 25°C.. J Solution Chem 22, 907–918 (1993). https://doi.org/10.1007/BF00646602

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646602

Key Words

Navigation